Metal Slot Color Filter Based on Thin Air Slots on Silver Block Array
Abstract
1. Introduction
2. Structure Design
3. Optimized Structure and Color Space
4. Angular Distribution of Transmitted Light
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Painter, O. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-G.; Kim, S.-H.; Seo, M.-K.; Ju, Y.-G.; Kim, S.-B.; Lee, Y.-H. Characteristics of electrically driven two-dimensional photonic crystal lasers. IEEE J. Quantum Electron. 2005, 41, 1131–1141. [Google Scholar] [CrossRef]
- Park, H.-G.; Kim, S.-H.; Kwon, S.-H.; Ju, Y.-G.; Yang, J.-K.; Baek, J.-H.; Kim, S.-B.; Lee, Y.-H. Electrically driven single-cell photonic crystal laser. Science 2004, 305, 1444–1447. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Lee, T.-W.; Lee, D.E.; Hong, S.; Kwon, S.-H. Spatially relocatable and spectrally tunable photonic crystal cavity by using a microsphere. J. Nanophotonics 2016, 10, 030501. [Google Scholar] [CrossRef]
- Fafarman, A.T.; Hong, S.H.; Caglayan, H.; Ye, X.; Diroll, B.T.; Paik, T.; Engheta, N.; Murray, C.B.; Kagan, C.R. Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals. Nano Lett. 2013, 13, 350c357. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lee, Y.J.; Moon, K.; Kwon, S.-H. Double resonance perfect absorption in a dielectric nanoparticle array. Curr. Opt. Photonics 2017, 1, 228–232. [Google Scholar]
- Wu, Y.-K.R.; Hollowell, A.E.; Zhang, C.; Guo, L.J. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep. 2013, 3, 1194. [Google Scholar] [CrossRef]
- Wood, T.; Naffouti, M.; Berthelot, J.; David, T.; Claude, J.B.; Métayer, L.; Delobbe, A.; Favre, L.; Ronda, A.; Berbezier, I.; et al. All-dielectric color filters using sige-based mie resonator arrays. ACS Photonics 2017, 4, 873–883. [Google Scholar] [CrossRef]
- Proust, J.; Bedu, F.; Gallas, B.; Ozerov, I.; Bonod, N. All-dielectric colored metasurfaces with silicon mie resonators. ACS Nano 2016, 10, 7761–7767. [Google Scholar] [CrossRef]
- Yokogawa, S.; Burgos, S.P.; Atwater, H.A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 2012, 12, 4349–4354. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Clark, A.W.; Cooper, J.M. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 2016, 10, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Ishii, S.; Kildishev, A.V.; Shalaev, V.M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light. Appl. 2013, 2, e72. [Google Scholar] [CrossRef]
- Aieta, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gahurro, Z.; Capasso, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. NANO Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Cho, K.-S.; Lee, E.K.; Lee, S.J.; Chae, J.; Kim, J.W.; Kim, D.H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S.Y.; et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182. [Google Scholar] [CrossRef]
- Forrest, S.R.; Burrows, P.E.; Shen, Z.; Gu, G.; Bulovic, V.; Thompson, M.E. The stacked OLED (SOLED): A new type of organic device for achieving high-resolution full-color displays. Synth. Met. 1997, 91, 9–13. [Google Scholar] [CrossRef]
- Miyamichi, A.; Ono, A.; Kamehama, H.; Kagawa, K.; Yasutomi, K.; Kawahito, S. Multi-band plasmonic color filters for visible-to-near-infrared image sensors. Opt. Express 2018, 26, 25178–25187. [Google Scholar] [CrossRef]
- Fleischman, D.; Fountaine, K.T.; Bukowsky, C.R.; Tagliabue, G.; Sweatlock, L.A.; Atwater, H.A. High spectral resolution plasmonic color filters with subwavelength dimensions. ACS Photonics 2019, 6, 332–338. [Google Scholar] [CrossRef]
- Xu, Q.; Almeida, V.R.; Panepucci, R.R.; Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 2004, 29, 1626. [Google Scholar] [CrossRef]
- Veronis, G.; Fan, S. Modes of subwavelength plasmonic slot waveguides. J. Light. Technol. 2007, 25, 2511–2521. [Google Scholar] [CrossRef]
- Davoyan, A.R.; Shadrivov, I.V.; Kivshar, Y.S. Nonlinear plasmonic slot waveguides. Opt. Express 2008, 16, 21209. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.-N.; Brongersma, M.L.; Dal Negro, L. Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 $\mu{\hbox {m}}$. IEEE J. Quantum Electron. 2007, 43, 479–485. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, W. Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 2012, 29, 1490. [Google Scholar] [CrossRef]
- Choi, J.-H.; No, Y.-S.; So, J.-P.; Lee, J.M.; Kim, K.-H.; Hwang, M.-S.; Kwon, S.-H.; Park, H.-G. A high-resolution strain-gauge nanolaser. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Zhang, X.; Hill, D.J.; Song, K.D.; Park, J.S.; Park, H.G.; Cahoon, J.F. Doubling absorption in nanowire solar cells with dielectric shell optical antennas. Nano Lett. 2015, 15, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Dusanowski, Ł.; Kwon, S.H.; Schneider, C.; Höfling, S. Near-Unity Indistinguishability Single Photon Source for Large-Scale Integrated Quantum Optics. Phys. Rev. Lett. 2019, 122, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Iff, O.; Lundt, N.; Betzold, S.; Tripathi, L.N.; Emmerling, M.; Lee, Y.J.; Kwon, S.-H.; Höfling, S.; Schneider, C. Deterministic coupling of quantum emitters in WSe$_2$ monolayers to plasmonic nanocavities. Opt. Express 2018, 26, 25944–25951. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965, 55, 1205. [Google Scholar] [CrossRef]
- Huang, K.C.Y.; Seo, M.K.; Sarmiento, T.; Huo, Y.; Harris, J.S.; Brongersma, M.L. Electrically driven subwavelength optical nanocircuits. Nat. Photonics 2014, 8, 244–249. [Google Scholar] [CrossRef]
- López-Tejeira, F.; Rodrigo, S.G.; Martín-Moreno, L.; García-Vidal, F.J.; Devaux, E.; Ebbesen, T.W.; Krenn, J.R.; Radko, I.P.; Bozhevolnyi, S.I.; González, M.U.; et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 2007, 3, 324–328. [Google Scholar] [CrossRef]
- Henzie, J.; Andrews, S.C.; Ling, X.Y.; Li, Z.; Yang, P. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl. Acad. Sci. USA 2013, 110, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Kageyama, H.; Oaki, Y.; Imai, H. Direction control of oriented self-assembly for 1D, 2D, and 3D microarrays of anisotropic rectangular nanoblocks. J. Am. Chem. Soc. 2014, 136, 3716–3719. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-W.; Lee, D.E.; Lee, Y.J.; Kwon, S.-H. Low cross-talk, deep subwavelength plasmonic metal/insulator/metal waveguide intersections with broadband tunability. Photonics Res. 2016, 4, 272. [Google Scholar] [CrossRef]
- Miyazaki, H.T.; Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 2006, 96, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Lee, T.-W.; Lee, Y.; Kwon, S.-H. A Metal-insulator-metal deep subwavelength cavity based on cutoff frequency modulation. Appl. Sci. 2017, 7, 86. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Zhang, S.; Chen, Y.; Liu, P.; Duan, H. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays. Nanotechnology 2019, 30, 335201. [Google Scholar] [CrossRef]
- Parashar, P.K.; Komarala, V.K. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Gerard, D.; Gray, S.K. Aluminium plasmonics. J. Phys. D Appl. Phys. 2015, 48. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Moon, K.; Lee, Y.J.; Hong, S.; Kwon, S.-H. Metal Slot Color Filter Based on Thin Air Slots on Silver Block Array. Nanomaterials 2019, 9, 912. https://doi.org/10.3390/nano9060912
Kim Y, Moon K, Lee YJ, Hong S, Kwon S-H. Metal Slot Color Filter Based on Thin Air Slots on Silver Block Array. Nanomaterials. 2019; 9(6):912. https://doi.org/10.3390/nano9060912
Chicago/Turabian StyleKim, Youngsoo, Kihwan Moon, Young Jin Lee, Seokhyeon Hong, and Soon-Hong Kwon. 2019. "Metal Slot Color Filter Based on Thin Air Slots on Silver Block Array" Nanomaterials 9, no. 6: 912. https://doi.org/10.3390/nano9060912
APA StyleKim, Y., Moon, K., Lee, Y. J., Hong, S., & Kwon, S.-H. (2019). Metal Slot Color Filter Based on Thin Air Slots on Silver Block Array. Nanomaterials, 9(6), 912. https://doi.org/10.3390/nano9060912