Electrodes Based on Carbon Aerogels Partially Graphitized by Doping with Transition Metals for Oxygen Reduction Reaction
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of the Materials
2.2. Electro-Chemical Studies. Oxygen Reduction Reaction
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jung, D.H.; Bae, S.J.; Kim, S.J.; Nahm, K.S.; Kim, P. Effect of the Pt precursor on the morphology and catalytic performance of Pt-impregnated on Pd/C for the oxygen reduction reaction in polymer electrolyte fuel cells. Int. J. Hydrog. Energy 2011, 36, 9115–9122. [Google Scholar] [CrossRef]
- Yang, Z.; Nie, H.; Chen, X.; Chen, X.; Huang, S. Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 2013, 236, 238–249. [Google Scholar] [CrossRef]
- Banham, D.; Ye, S.; Pei, K.; Ozaki, J.-I.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2015, 285, 334–348. [Google Scholar] [CrossRef]
- Lee, C.L.; Chiou, H.P.; Syu, C.M.; Wu, C.C. Silver triangular nanoplates as electrocatalyst for oxygen reduction reaction. Electrochem. Commun. 2010, 12, 1609–1613. [Google Scholar] [CrossRef]
- Bo, X.; Zhang, Y.; Li, M.; Nsabimana, A.; Guo, L. NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4. J. Power Sources 2015, 288, 1–8. [Google Scholar] [CrossRef]
- Stojmenović, M.; Momčilović, M.; Gavrilov, N.; Pašti, I.A.; Mentus, S.; Jokić, B.; Babić, B. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media. Electrochim. Acta 2015, 153, 130–139. [Google Scholar] [CrossRef]
- Zhao, A.; Masa, J.; Xia, W. Oxygen-deficient titania as alternative support for Pt catalysts for the oxygen reduction reaction. J. Energy Chem. 2014, 23, 701–707. [Google Scholar] [CrossRef]
- Kim, J.H.; Chang, S.; Kim, Y.T. Compressive strain as the main origin of enhanced oxygen reduction reaction activity for Pt electrocatalysts on chromium-doped titania support. Appl. Catal. B Environ. 2014, 158–159, 112–118. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Kim, D.; Jeon, S. Covalently grafted platinum nanoparticles to multi walled carbon nanotubes for enhanced electrocatalytic oxygen reduction. Electrochim. Acta 2013, 92, 168–175. [Google Scholar] [CrossRef]
- Oh, J.-M.; Park, J.; Kumbhar, A.; Smith, D.; Creager, S. Electrochemical Oxygen Reduction at Platinum/Mesoporous Carbon/Zirconia/Ionomer Thin-Film Composite Electrodes. Electrochim. Acta 2014, 138, 278–287. [Google Scholar] [CrossRef]
- Dou, S.; Shen, A.; Ma, Z.; Wu, J.; Tao, L.; Wang, S. N-, P- and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction. J. Electroanal. Chem. 2015, 753, 21–27. [Google Scholar] [CrossRef]
- Ishii, T.; Maie, T.; Kimura, N.; Kobori, Y.; Imashiro, Y.; Ozaki, J.-I. Enhanced catalytic activity of nanoshell carbon co-doped with boron and nitrogen in the oxygen reduction reaction. Int. J. Hydrog. Energy 2017, 42, 5–12. [Google Scholar] [CrossRef]
- Sarapuu, A.; Kreek, K.; Kisand, K.; Kook, M.; Uibu, M.; Koel, M.; Tammeveski, K. Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solution. Electrochim. Acta 2017, 230, 81–88. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Vivo-Vilches, J.F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Free metal oxygen-reduction electro-catalysts obtained from biomass residue of the olive oil industry. Chem. Eng. J. 2016, 306, 1109–1115. [Google Scholar] [CrossRef]
- Pekala, R.W.; Alviso, C.T.; Kong, F.M.; Hulsey, S.S. Aerogels derived from multifunctional organic monomers. J. Non-Cryst. Solids 1992, 145, 90–98. [Google Scholar] [CrossRef]
- ElKhatat, A.M.; Al-Muhtaseb, S.A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 2011, 23, 2887–2903. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Suárez, E.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. On the micro-and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem. Eng. J. 2012, 181, 851–855. [Google Scholar] [CrossRef]
- Morales-Torres, S.; Maldonado-Hódar, F.J.; Pérez-Cadenas, A.F.; Carrasco-Marín, F. Textural and mechanical characteristics of carbon aerogels synthesized by polymerization of resorcinol and formaldehyde using alkali carbonates as basification agents. Phys. Chem. Chem. Phys. 2010, 12, 10365–10372. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Hódar, F.J.; Jirglová, H.; Pérez-Cadenas, A.F.; Morales-Torres, S. Chemical control of the characteristics of Mo-doped carbon xerogels by surfactant-mediated synthesis. Carbon N. Y. 2013, 51, 213–223. [Google Scholar] [CrossRef]
- Vivo-Vilches, J.F.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. Fitting the porosity of carbon xerogel by CO2 activation to improve the TMP/n-octane separation. Microporous Mesoporous Mater. 2015, 209, 10–17. [Google Scholar] [CrossRef]
- Maldonado-Hódar, F.J.; Moreno-Castilla, C.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Reversible toluene adsorption on monolithic carbon aerogels. J. Hazard. Mater. 2007, 148, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Bailon-Garcia, E.; Carrasco-Marin, F.; Perez-Cadenas, A.F.; Maldonado-Hodar, F.J. Microspheres of carbon xerogel: An alternative Pt-support for the selective hydrogenation of citral. Appl. Catal. A Gen. 2014, 482, 318–326. [Google Scholar] [CrossRef]
- Bailón-García, E.; Elmouwahidi, A.; Álvarez, M.A.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl. Catal. B Environ. 2017, 201, 29–40. [Google Scholar] [CrossRef]
- Duarte, F.; Maldonado-Hódar, F.J.; Pérez-Cadenas, A.F.; Madeira, L.M. Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels. Appl. Catal. B Environ. 2009, 85, 139–147. [Google Scholar] [CrossRef]
- Maldonado-Hódar, F.J.; Moreno-Castilla, C.; Pérez-Cadenas, A.F. Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels. Appl. Catal. B Environ. 2004, 54, 217–224. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Castelo-Quibén, J.; Carrasco-Marín, F. Electrochemical performances of supercapacitors from carbon-ZrO2 composites. Electrochim. Acta 2018, 259, 803–814. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Bailón-García, E.; Castelo-Quibén, J.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Carbon-TiO2 composites as high-performance supercapacitor electrodes: Synergistic effect between carbon and metal oxide phases. J. Mater. Chem. A 2018, 6. [Google Scholar] [CrossRef]
- Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Moreno-Castilla, C. Molybdenum carbide formation in molybdenum-doped organic and carbon aerogels. Langmuir 2005, 21, 10850–10855. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Hódar, F.J.; Pérez-Cadenas, A.F.; Moreno-Castilla, C. Morphology of heat-treated tunsgten doped monolithic carbon aerogels. Carbon N. Y. 2003, 41, 1291–1299. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Maldonado-Hódar, F.J.; Moreno-Castilla, C.; Pérez-Cadenas, A.F. Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives. Microporous Mesoporous Mater. 2004, 69, 119–125. [Google Scholar] [CrossRef]
- Maldonado-Hódar, F.J.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Hanzawa, Y.; Yamada, Y. Catalytic Graphitization of Carbon Aerogels by Transition Metals. Langmuir 2000, 16, 4367–4373. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database. Available online: https://srdata.nist.gov/xps/ (accessed on 16 April 2018).
- Schwan, J.; Ulrich, S.; Batori, V.; Ehrhardt, H.; Silva, S.R.P. Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 1996, 80, 440. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Yan, M.; Zhai, Z.; Ren, B.; Zhang, L.; Liu, Z. Comparative study of metal-doped carbon aerogel: Physical properties and electrochemical performance. J. Electroanal. Chem. 2018, 809, 111–116. [Google Scholar] [CrossRef]
- Sarapuu, A.; Samolberg, L.; Kreek, K.; Koel, M.; Matisen, L.; Tammeveski, K. Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. J. Electroanal. Chem. 2015, 746, 9–17. [Google Scholar] [CrossRef]
- Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192. [Google Scholar] [CrossRef]
- Shin, D.; An, X.; Choun, M.; Lee, J. Effect of transition metal induced pore structure on oxygen reduction reaction of electrospun fibrous carbon. Catal. Today 2016, 260, 82–88. [Google Scholar] [CrossRef]
- Chao, S.; Zhang, Y.; Wang, K.; Bai, Z.; Yang, L. Flower—like Ni and N codoped hierarchical porous carbon microspheres with enhanced performance for fuel cell storage. Appl. Energy 2016, 175, 421–428. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; González-Gaitán, C.; Morallón, E.; Cazorla-Amorós, D. Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR. Some insights about the nature of the active sites. Carbon N. Y. 2017, 119, 62–71. [Google Scholar] [CrossRef]
- Ferrero, G.A.; Preuss, K.; Fuertes, A.B.; Sevilla, M.; Titirici, M.-M. The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. J. Mater. Chem. A 2016, 4, 2581–2589. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Zhang, T.; Yan, X.; Yuan, Y.; Zhang, H.; Zhao, H.; Zhang, D.; Zhu, G.; Yao, X. One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 11666–11671. [Google Scholar] [CrossRef]
- Pan, F.; Cao, Z.; Zhao, Q.; Liang, H.; Zhang, J. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 272, 8–15. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.; Cao, X.; Jin, J.; Liu, Q.; Zhang, J. FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction. Appl. Catal. B Environ. 2013, 130–131, 143–151. [Google Scholar] [CrossRef]
- González-Gaitán, C.; Ruiz-Rosas, R.; Morallón, E.; Cazorla-Amorós, D. Relevance of the Interaction between the M-Phthalocyanines and Carbon Nanotubes in the Electroactivity toward ORR. Langmuir 2017, 33, 11945–11955. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, Y.; Niu, Y.; Bao, S.; Hu, W. Cobalt nanoparticle decorated graphene aerogel for efficient oxygen reduction reaction electrocatalysis. Int. J. Hydrog. Energy 2017, 42, 5930–5937. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Ye, C.; Wang, M.; Li, T.-H.; Yu, Y.-N.; Bao, S.-J. Synthesis of M (Fe3C, Co, Ni)-porous carbon frameworks as high-efficient ORR catalysts. Energy Storage Mater. 2018, 11, 112–117. [Google Scholar] [CrossRef]
- Goubert-Renaudin, S.N.S.; Wieckowski, A. Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature. J. Electroanal. Chem. 2011, 652, 44–51. [Google Scholar] [CrossRef]
Sample | SBET | W0 (N2) | L0 (N2) | W0 (CO2) | L0 (CO2) | V0.95 (N2) | VBJH (N2) | LBJH |
---|---|---|---|---|---|---|---|---|
m2∙g−1 | cm3∙g−1 | nm | cm3∙g−1 | nm | cm3∙g−1 | cm3∙g−1 | nm | |
A0 | 700 | 0.276 | 1.20 | 0.249 | 1.06 | 1.21 | 0.89 | 19.8 |
ANi1 | 663 | 0.258 | 1.07 | 0.276 | 0.63 | 0.82 | 0.54 | 17.1 |
ANi4 | 685 | 0.268 | 0.96 | 0.280 | 0.63 | 0.71 | 0.46 | 16.9 |
ANi6 | 698 | 0.273 | 0.90 | 0.294 | 0.64 | 0.69 | 0.48 | 16.8 |
ACo6 | 589 | 0.230 | 1.00 | 0.181 | 0.57 | 0.65 | 0.40 | 14.1 |
AFe6 | 461 | 0.177 | 1.00 | 0.182 | 0.62 | 0.41 | 0.25 | 12.3 |
Sample | MetalTOTAL | MetalXPS | OXPS | dXRD | dHRTEM | IG/ID |
---|---|---|---|---|---|---|
wt % | wt % | wt % | nm | nm | ||
A0 | n.d. | n.d. | 1.4 | n.d. | n.d. | - |
ANi1 | 1.2 | n.d | 1.6 | 15.9 | 11.9 | 0.97 |
ANi4 | 3.9 | n.d | 1.6 | 17.4 | 15.5 | 0.99 |
ANi6 | 5.8 | 0.3 | 1.8 | 21.1 | 17.7 | 0.99 |
ACo6 | 5.9 | 0.7 | 3.6 | 21.5 | 19.4 | 0.92 |
AFe6 | 6.1 | 0.4 | 2.9 | 21.6 | 18.6 | 0.89 |
Sample | Eonset | jk | n |
---|---|---|---|
V | mA·cm−2 | ||
ANi1 | −0.22 | 16.6 | 3.1 |
ANi4 | −0.21 | 16.9 | 3.9 |
ANi6 | −0.21 | 28.1 | 4.2 |
ACo6 | −0.17 | 34.9 | 3.6 |
AFe6 | −0.22 | 26.2 | 4.1 |
Catalyst Name | Type of Support | Eonset vs. Ag/AgCl (V) | n | Ref. | Metal wt % | jk mA·cm−2 |
---|---|---|---|---|---|---|
ANi6 | Carbon aerogel | −0.210 | 4.2 | This work | 5.8 | 28.1 |
ACo6 | Carbon aerogel | −0.170 | 3.6 | This work | 5.8 | 34.9 |
AFe6 | Carbon aerogel | −0.220 | 4.1 | This work | 6.1 | 26.2 |
20% Pt Vulcan | Carbon black | −0.037 | 3.9 | [40] | 20 | N.R. |
20% Pt/C | Graphitic carbon | −0.050 | 3.9 | [41] | 20 | 5 |
20% Pt/C | Graphitic carbon | −0.070 | 4.2 | [42] | 20 | 28.8 |
20% Pt/C | Carbon black | −0.065 | 4.0 | [43] | 20 | 14 |
20% Pt/C | Carbon black | - | 3.9 | [44] | 20 | ≈29 * |
Pt/Vulcan | Carbon black | −0.007 | 3.9 | [45] | 20 | N.R. |
NT_FePc_400 | Carbon nanotube | −0.037 | 3.9 | [45] | 2.1 | N.R. |
NT_CoPc_400 | Carbon nanotube | −0.150 | 2.4 | [45] | 2.1 | N.R. |
Co-NCA | Carbon aerogel | −0.150 | 4.0 | [36] | 3 | ≈25 * |
Fe-NCA | Carbon aerogel | −0.150 | 3.8 | [36] | 5.2 | ≈14 * |
Fe-NCA5 | Carbon aerogel | −0.051 | 3.8 | [13] | 7.7 | ≈25 * |
FeCo-N-rGO | Carbon nanotube | 0.050 | 3.9 | [44] | 0.46 | ≈25 * |
CoNPs/rGO | Graphene oxide | −0.115 | 3.9 | [46] | 0.3 | N.R. |
Fe3C-CNTFs | Carbon nanotube | 0.105 | 3.1 | [47] | N.R. | 4.89 |
Co-CNTFs | Carbon nanotube | −0.015 | 3.9 | [47] | N.R. | 5.23 |
Ni-CNTs | Carbon nanotube | 0.055 | 2.6 | [47] | N.R. | 3.67 |
Ni | Unsupported | 0 | 0 | [48] | 100 | 0 |
Co | Unsupported | 0 | 0 | [48] | 100 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahab, A.; Castelo-Quibén, J.; Vivo-Vilches, J.F.; Pérez-Cadenas, M.; Maldonado-Hódar, F.J.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Electrodes Based on Carbon Aerogels Partially Graphitized by Doping with Transition Metals for Oxygen Reduction Reaction. Nanomaterials 2018, 8, 266. https://doi.org/10.3390/nano8040266
Abdelwahab A, Castelo-Quibén J, Vivo-Vilches JF, Pérez-Cadenas M, Maldonado-Hódar FJ, Carrasco-Marín F, Pérez-Cadenas AF. Electrodes Based on Carbon Aerogels Partially Graphitized by Doping with Transition Metals for Oxygen Reduction Reaction. Nanomaterials. 2018; 8(4):266. https://doi.org/10.3390/nano8040266
Chicago/Turabian StyleAbdelwahab, Abdalla, Jesica Castelo-Quibén, José F. Vivo-Vilches, María Pérez-Cadenas, Francisco J. Maldonado-Hódar, Francisco Carrasco-Marín, and Agustín F. Pérez-Cadenas. 2018. "Electrodes Based on Carbon Aerogels Partially Graphitized by Doping with Transition Metals for Oxygen Reduction Reaction" Nanomaterials 8, no. 4: 266. https://doi.org/10.3390/nano8040266
APA StyleAbdelwahab, A., Castelo-Quibén, J., Vivo-Vilches, J. F., Pérez-Cadenas, M., Maldonado-Hódar, F. J., Carrasco-Marín, F., & Pérez-Cadenas, A. F. (2018). Electrodes Based on Carbon Aerogels Partially Graphitized by Doping with Transition Metals for Oxygen Reduction Reaction. Nanomaterials, 8(4), 266. https://doi.org/10.3390/nano8040266