Next Article in Journal
Significant Carrier Extraction Enhancement at the Interface of an InN/p-GaN Heterojunction under Reverse Bias Voltage
Next Article in Special Issue
Facile Photochemical Syntheses of Conjoined Nanotwin Gold-Silver Particles within a Biologically-Benign Chitosan Polymer
Previous Article in Journal
Applied Stress-Assisted Growth of Single Crystal γ-Fe2O3 Nanowires
Previous Article in Special Issue
Polarization Controllable Device for Simultaneous Generation of Surface Plasmon Polariton Bessel-Like Beams and Bottle Beams

Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared

School of Physics, Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, China
Author to whom correspondence should be addressed.
Nanomaterials 2018, 8(12), 1038;
Received: 2 December 2018 / Accepted: 9 December 2018 / Published: 12 December 2018
(This article belongs to the Special Issue Plasmonic Nanostructures and Related Applications)
The spectral range of solar radiation observed on the earth is approximately 295 to 2500 nm. How to widen the absorption band of the plasmonic absorber in this range has become a hot issue in recent years. In this paper, we propose a highly applicable refractory perfect absorber with an elliptical titanium nanodisk array based on a silica–titanium–silica–titanium four-layer structure. Through theoretical design and numerical demonstration, the interaction of surface plasmon resonance with the Fabry–Perot cavity resonance results in high absorption characteristics. Our investigations illustrate that it can achieve ultra-broadband absorption above 90% from a visible 550-nm wavelength to a near-infrared 2200-nm wavelength continuously. In particular, a continuous 712-nm broadband perfect absorption of up to 99% is achieved from wavelengths from 1013 to 1725 nm. The air mass 1.5 solar simulation from a finite-difference time domain demonstrates that this absorber can provide an average absorption rate of 93.26% from wavelengths of 295 to 2500 nm, which can absorb solar radiation efficiently on the earth. Because of the high melting point of Ti material and the symmetrical structure of this device, this perfect absorber has excellent thermal stability, polarization independence, and large incident-angle insensitivity. Hence, it can be used for solar cells, thermal emitters, and infrared detection with further investigation. View Full-Text
Keywords: perfect absorber; refractory; ultra-broadband; large incident-angle insensitivity perfect absorber; refractory; ultra-broadband; large incident-angle insensitivity
Show Figures

Figure 1

MDPI and ACS Style

Gao, H.; Peng, W.; Chu, S.; Cui, W.; Liu, Z.; Yu, L.; Jing, Z. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared. Nanomaterials 2018, 8, 1038.

AMA Style

Gao H, Peng W, Chu S, Cui W, Liu Z, Yu L, Jing Z. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared. Nanomaterials. 2018; 8(12):1038.

Chicago/Turabian Style

Gao, Huixuan, Wei Peng, Shuwen Chu, Wenli Cui, Zhi Liu, Li Yu, and Zhenguo Jing. 2018. "Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared" Nanomaterials 8, no. 12: 1038.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop