Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent
2.2. Preparation of Pd NP
2.3. Preparation of UME
2.4. Electrochemical Cell and Technique
2.5. Instrumentation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sönnichsen, C.; Reinhard, B.M.; Liphardt, J.; Alivisatos, P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, F.-R.F.; Bard, A.J. An electrochemical coulomb staircase: Detection of single electron-transfer events at nanometer electrodes. Science 1997, 277, 1791–1793. [Google Scholar] [CrossRef]
- Xiao, X.; Bard, A.J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Fan, F.-R.F.; Zhou, J.; Bard, A.J. Current transient in single nanoparticle collision events. J. Am. Chem. Soc. 2008, 130, 16669–16677. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Fan, F.-R.F.; Bard, A.J. Observing Iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 2010, 132, 13165–13167. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-G.; Rees, N.V.; Compton, R.G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. Int. Ed. 2011, 50, 4219–4221. [Google Scholar] [CrossRef] [PubMed]
- Quinn, B.M.; van’t Hof, P.G.; Lemay, S.G. Time-resolved electrochemical detection of discrete adsorption events. J. Am. Chem. Soc. 2004, 126, 8360–8361. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, S.E.F.; Lai, S.C.S.; Miller, T.S.; Yanson, A.I.; Koper, M.T.M.; Unwin, P.R. Landing and catalytic characterization of individual nanoparticles on electrode surfaces. J. Am. Chem. Soc. 2012, 134, 18558–18561. [Google Scholar] [CrossRef] [PubMed]
- Fosdick, S.E.; Anderson, M.J.; Nettleton, E.G.; Crooks, R.M. Correlated electrochemical and optical tracking of discrete collision events. J. Am. Chem. Soc. 2013, 135, 5994–5997. [Google Scholar] [CrossRef] [PubMed]
- Dasari, R.; Robinson, D.A.; Stevenson, K.J. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. J. Am. Chem. Soc. 2013, 135, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-H.; Percival, S.J.; Zhang, B. Chemically resolved transient collision events of single electrocatalytic nanoparticles. J. Am. Chem. Soc. 2014, 136, 8879–8882. [Google Scholar] [CrossRef] [PubMed]
- Fernando, A.; Parajuli, F.; Alpuche-Aviles, M.A. Observation of individual semiconducting nanoparticle collisions by stochastic photoelectrochemical currents. J. Am. Chem. Soc. 2013, 135, 10894–10897. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Ravenhill, E.R.; Momotenko, D.; Kim, Y.-R.; Lai, S.C.S.; Unwin, P.R. Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 2015, 31, 11932–11942. [Google Scholar] [CrossRef] [PubMed]
- Ustarroz, J.; Kang, M.; Bullions, E.; Unwin, P.R. Impact and oxidation of single silver nanoparticles at electrode surface: One shot versus multiple events. Chem. Sci. 2017, 8, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Park, J.H.; Fan, F.-R.F.; Bard, A.J. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramircoelectrode. J. Am. Chem. Soc. 2012, 134, 13212–13215. [Google Scholar] [CrossRef] [PubMed]
- Dasari, R.; Robinson, D.A.; Stevenson, K.J. Electrochemical Monitoring of Single Nanoparticle Collisions at Mercury-Modified Platinum Ultramicroelectrodes. ACS Nano 2014, 8, 4539–4546. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-G.; Rees, N.V.; Pillay, J.; Tshikhudo, R.; Vilakazi, S.; Compton, R.G. Gold nanoparticles show electroactivity: Counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 2012, 48, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Haddou, B.; Rees, N.V.; Compton, R.G. Nanoparticle-electrode impacts: The oxidation of copper nanoparticles has slow kinetics. Phys. Chem. Chem. Phys. 2012, 14, 13612–13617. [Google Scholar] [CrossRef] [PubMed]
- Boika, A.; Thorgaard, S.N.; Bard, A.J. Monitoring the electrophoretic migration and adsorption of single insulating nanoparticles at ultramicroelectrodes. J. Phys. Chem. B 2013, 117, 4371–4380. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Kim, J.; Bard, A.J. Electrochemistry of a single attoliter emulsion droplet in collisions. J. Am. Chem. Soc. 2015, 137, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Dick, J.E.; Hilterbrand, A.T.; Boika, A.; Upton, J.W.; Bard, A.J. Electrochemical detection of single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. Proc. Natl. Acad. Sci. USA 2015, 112, 5303–5308. [Google Scholar] [CrossRef] [PubMed]
- Dick, J.E.; Renault, C.; Bard, A.J. Obeservation of single-protein and DNA macromolecule collisions on ultramicroelectrodes. J. Am. Chem. Soc. 2015, 137, 8376–8379. [Google Scholar] [CrossRef] [PubMed]
- Safavi, A.; Maleki, N.; Tajabadi, F.; Farjami, E. High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochem. Commun. 2007, 9, 1963–1968. [Google Scholar] [CrossRef]
- Chen, X.-M.; Cai, Z.-X.; Huang, Z.-Y.; Oyama, M.; Jiang, Y.-Q.; Chen, X. Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide. Electrochim. Acta 2013, 97, 398–403. [Google Scholar] [CrossRef]
- You, J.-M.; Jeong, Y.N.; Ahmed, M.S.; Kim, S.K.; Choi, H.C.; Jeon, S. Reductive determination of hydrogen peroxide with MWCNTs-Pd nanoparticles on a modified glassy carbon electrode. Biosens. Bioelectron. 2011, 26, 2287–2291. [Google Scholar] [CrossRef] [PubMed]
- Daryanavard, N.; Zare, H.R. Single Palladium nanoparticle collisions detection through chronopotentiometric method: Introducing a new approach to improve the snalytical signals. Anal. Chem. 2017, 89, 8901–8907. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Perry, D.; Kim, Y.-R.; Colburn, A.W.; Lazenby, R.A.; Unwin, P.R. Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts. J. Am. Chem. Soc. 2015, 137, 10902–10905. [Google Scholar] [CrossRef] [PubMed]
- Stuart, E.J.E.; Rees, N.V.; Compton, R.G. Particle-impact voltammetry: The reduction of hydrogen peroxide at silver nanoparticles impacting a carbon electrode. Chem. Phys. Lett. 2012, 531, 94–97. [Google Scholar] [CrossRef]
- Jung, A.R.; Lee, S.; Joo, J.W.; Shin, C.; Bae, H.; Moon, S.G.; Kwon, S.J. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode. J. Am. Chem. Soc. 2015, 137, 1762–1765. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, Y.-T.; Gao, G.-H.; Wang, T.; Zhao, B.; Fu, X.-Z.; Sung, R.; Wong, C.-P. Electro-oxidation of formaldehyde and methanol over hollow porous palladium nanoparticles with enhanced catalytic activity. Catal. Commun. 2015. [Google Scholar] [CrossRef]
- Kim, J.J.; Choi, Y.S.; Kwon, S.J. Study on Electrocatalytic water oxidation reaction by Iridium oxide and its bubble overpotential Effect. J. Korean Electrochem. Soc. 2013, 16, 70–73. [Google Scholar] [CrossRef]
- Kwon, S.J.; Bard, A.J. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy. J. Am. Chem. Soc. 2012, 134, 7102–7108. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Zhou, H.; Fan, F.-R.F.; Vorobyev, V.; Zhang, B.; Bard, A.J. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes—Theory and experiments. Phys. Chem. Chem. Phys. 2011, 13, 5394–5402. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Ectrochemical Methods, Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.Y.; Kim, K.J.; Son, H.; Kwon, S.J. Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction. Nanomaterials 2018, 8, 879. https://doi.org/10.3390/nano8110879
Park JY, Kim KJ, Son H, Kwon SJ. Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction. Nanomaterials. 2018; 8(11):879. https://doi.org/10.3390/nano8110879
Chicago/Turabian StylePark, June Young, Ki Jun Kim, Hyeryeon Son, and Seong Jung Kwon. 2018. "Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction" Nanomaterials 8, no. 11: 879. https://doi.org/10.3390/nano8110879
APA StylePark, J. Y., Kim, K. J., Son, H., & Kwon, S. J. (2018). Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction. Nanomaterials, 8(11), 879. https://doi.org/10.3390/nano8110879