Next Article in Journal
Evidence of Protein Adsorption in Pegylated Liposomes: Influence of Liposomal Decoration
Next Article in Special Issue
An Enzymatic Glucose Sensor Composed of Carbon-Coated Nano Tin Sulfide
Previous Article in Journal
Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging
Previous Article in Special Issue
A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI3)1−x(MAPbBr3)x
Open AccessArticle

Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide

1
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
2
Department of Materials Physics, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
*
Author to whom correspondence should be addressed.
Academic Editors: Hao-chung Kuo, Chien-chung Lin and Kai Wang
Nanomaterials 2017, 7(2), 36; https://doi.org/10.3390/nano7020036
Received: 5 January 2017 / Revised: 31 January 2017 / Accepted: 7 February 2017 / Published: 10 February 2017
Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO) nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV) glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity. View Full-Text
Keywords: zinc oxide nanorod; carbon material; glucose; non-enzymatic electrochemical biosensor zinc oxide nanorod; carbon material; glucose; non-enzymatic electrochemical biosensor
Show Figures

Figure 1

MDPI and ACS Style

Chung, R.-J.; Wang, A.-N.; Liao, Q.-L.; Chuang, K.-Y. Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide. Nanomaterials 2017, 7, 36.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop