Next Article in Journal
The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol–Gel Process
Next Article in Special Issue
Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives
Previous Article in Journal
New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures
Previous Article in Special Issue
Synthesis of Au-Pd Bimetallic Nanoflowers for Catalytic Reduction of 4-Nitrophenol
Article

Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

Department of Chemistry, University of Crete, Voutes, 71003 Iraklion, Greece
*
Author to whom correspondence should be addressed.
Nanomaterials 2017, 7(12), 440; https://doi.org/10.3390/nano7120440
Received: 18 September 2017 / Revised: 20 November 2017 / Accepted: 6 December 2017 / Published: 12 December 2017
(This article belongs to the Special Issue Noble Metal Nanoparticles in Catalysis)
A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv) and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv) and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12%) from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity. View Full-Text
Keywords: formates; formamides; paraformaldehyde; aerobic coupling; Au nanoparticles formates; formamides; paraformaldehyde; aerobic coupling; Au nanoparticles
Show Figures

Graphical abstract

MDPI and ACS Style

Metaxas, I.; Vasilikogiannaki, E.; Stratakis, M. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde. Nanomaterials 2017, 7, 440. https://doi.org/10.3390/nano7120440

AMA Style

Metaxas I, Vasilikogiannaki E, Stratakis M. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde. Nanomaterials. 2017; 7(12):440. https://doi.org/10.3390/nano7120440

Chicago/Turabian Style

Metaxas, Ioannis, Eleni Vasilikogiannaki, and Manolis Stratakis. 2017. "Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde" Nanomaterials 7, no. 12: 440. https://doi.org/10.3390/nano7120440

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop