# Piezoelectric Potential in Single-Crystalline ZnO Nanohelices Based on Finite Element Analysis

^{1}

^{2}

^{3}

^{4}

^{*}

_{2}Based Nanostructures)

## Abstract

**:**

## 1. Introduction

## 2. Model and Method

#### 2.1. Model Configuration

#### 2.2. FEM Modeling of Nanowires and Nanohelices

^{®}. The bottom face of the nanowire and the nanohelix was fixed and electrically grounded in our model. A force was applied only to the top end, and the piezoelectric potential was numerically calculated. A nanowire and a nanohelix with the same side length and height were simulated to compare their piezoelectric potentials when exposed to the same force. A series of nanohelices with different numbers of coils and mean radii of the coil were calculated to reveal the change of piezoelectric potential in a helical structure. The effect of force direction was also investigated.

## 3. Simulation Results and Discussion

#### 3.1. Pizeoelectric Potential and Displacement of the ZnO Nanohelix and Nanowire

#### 3.2. Effect of the Number of Coils and the Mean Radius of the Coil on the Pizeoelectric Potential of a Nanohelix

#### 3.3. Effect of Acting Forces on the Pizeoelectric Potential and Displacement

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Yang, R.S.; Ding, Y.; Wang, Z.L. Deformation-free single-crystal nanohelixes of polar nanowires. Nano Lett.
**2004**, 4, 1309–1312. [Google Scholar] [CrossRef] - Gao, P.X.; Mai, W.; Wang, Z.L. Superelasticity and nanofracture mechanics of zno nanohelices. Nano Lett.
**2006**, 6, 2536–2543. [Google Scholar] [CrossRef] [PubMed] - Gao, H.; Zhang, X.T.; Zhou, M.Y.; Zhang, Z.G.; Wang, X.Z. Growth of novel zno nanohelices modified by sio 2-sheathed zno discs. Nanotechnology
**2007**, 18, 065601. [Google Scholar] [CrossRef] - Kong, X.Y.; Ding, Y.; Yang, R.; Wang, Z.L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science
**2004**, 303, 1348–1351. [Google Scholar] [CrossRef] [PubMed] - Kong, X.Y.; Wang, Z.L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett.
**2003**, 3, 1625–1631. [Google Scholar] [CrossRef] - Gao, P.X.; Wang, Z.L. High-yield synthesis of single-crystal nanosprings of zno. Small
**2005**, 1, 945–949. [Google Scholar] [CrossRef] [PubMed] - Yang, R.; Wang, Z.L. Springs, rings, and spirals of rutile-structured tin oxide nanobelts. J. Am. Chem. Soc.
**2006**, 128, 1466–1467. [Google Scholar] [CrossRef] [PubMed] - Huang, T.; Liu, Z.; Huang, G.; Liu, R.; Mei, Y. Grating-structured metallic microsprings. Nanoscale
**2014**, 6, 9428–9435. [Google Scholar] [CrossRef] [PubMed] - Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science
**2006**, 312, 242–246. [Google Scholar] [CrossRef] [PubMed] - Wang, X.D.; Song, J.H.; Liu, J.; Wang, Z.L. Direct-current nanogenerator driven by ultrasonic waves. Science
**2007**, 316, 102–105. [Google Scholar] [CrossRef] [PubMed] - Yang, R.; Qin, Y.; Dai, L.; Wang, Z.L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol.
**2009**, 4, 34–39. [Google Scholar] [CrossRef] [PubMed] - Zhu, R.; Zhang, W.G.; Yang, R.S. High output piezoelectric nanogenerator: Development and application. Sci. Adv. Mater.
**2012**, 4, 798–804. [Google Scholar] [CrossRef] - Wang, X.D.; Zhou, J.; Song, J.H.; Liu, J.; Xu, N.S.; Wang, Z.L. Piezoelectric field effect transistor and nanoforce sensor based on a single zno nanowire. Nano Lett.
**2006**, 6, 2768–2772. [Google Scholar] [CrossRef] [PubMed] - Kory, J.; Rusen, Y. Mechanical transfer of zno nanowires for a flexible and conformal piezotronic strain sensor. Semicond. Sci. Technol.
**2017**, 32, 074004. [Google Scholar] - Zhou, J.; Gu, Y.; Fei, P.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z.L. Flexible piezotronic strain sensor. Nano Lett.
**2008**, 8, 3035–3040. [Google Scholar] [CrossRef] [PubMed] - Wu, W.Z.; Wang, Z.L. Piezotronic nanowire-based resistive switches as programmable electromechanical memories. Nano Lett.
**2011**, 11, 2779–2785. [Google Scholar] [CrossRef] [PubMed] - Wu, W.Z.; Wei, Y.G.; Wang, Z.L. Strain-gated piezotronic logic nanodevices. Adv. Mater.
**2010**, 22, 4711–4715. [Google Scholar] [CrossRef] [PubMed] - Gao, Y.; Wang, Z.L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett.
**2007**, 7, 2499–2505. [Google Scholar] [CrossRef] [PubMed] - Gao, Z.; Zhou, J.; Gu, Y.; Fei, P.; Hao, Y.; Bao, G.; Wang, Z.L. Effects of piezoelectric potential on the transport characteristics of metal-zno nanowire-metal field effect transistor. J. Appl. Phys.
**2009**, 105, 113707. [Google Scholar] [CrossRef] [PubMed] - Sun, C.L.; Shi, J.A.; Wang, X.D. Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys.
**2010**, 108, 034309. [Google Scholar] [CrossRef] - Chen, X.Q.; Zhang, S.L.; Dikin, D.A.; Ding, W.Q.; Ruoff, R.S.; Pan, L.J.; Nakayama, Y. Mechanics of a carbon nanocoil. Nano Lett.
**2003**, 3, 1299–1304. [Google Scholar] [CrossRef] - Wang, J.-S.; Feng, X.-Q.; Wang, G.-F.; Yu, S.-W. Twisting of nanowires induced by anisotropic surface stresses. Appl. Phys. Lett.
**2008**, 92, 191901. [Google Scholar] [CrossRef] - Da Fonseca, A.F.; Galvão, D.S. Mechanical properties of nanosprings. Phys. Rev. Lett.
**2004**, 92, 175502. [Google Scholar] [CrossRef] [PubMed] - Smith, D.; Mailhiot, C. Theory of semiconductor superlattice electronic structure. Rev. Modern Phys.
**1990**, 62, 173. [Google Scholar] [CrossRef] - Clarke, D.R. Varistor ceramics. J. Am. Ceram. Soc.
**1999**, 82, 485–502. [Google Scholar] [CrossRef] - Hwang, G.; Hashimoto, H.; Bell, D.J.; Dong, L.; Nelson, B.J.; Schön, S. Piezoresistive ingaas/gaas nanosprings with metal connectors. Nano Lett.
**2009**, 9, 554–561. [Google Scholar] [CrossRef] [PubMed] - Zhang, Z.-Y.; Zhao, Y.-P. Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method. Appl. Phys. Lett.
**2007**, 90, 221501. [Google Scholar] [CrossRef] - Zhang, Z.-Y.; Zhao, Y.-P. Optical properties of helical and multiring Ag nanostructures: The effect of pitch height. J. Appl. Phys.
**2008**, 104, 013517. [Google Scholar] [CrossRef] - Kamata, K.; Suzuki, S.; Ohtsuka, M.; Nakagawa, M.; Iyoda, T.; Yamada, A. Fabrication of left-handed metal microcoil from spiral vessel of vascular plant. Adv. Mater.
**2011**, 23, 5509–5513. [Google Scholar] [CrossRef] [PubMed] - Gao, Y.; Wang, Z.L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett.
**2009**, 9, 1103–1110. [Google Scholar] [CrossRef] [PubMed] - Wang, Z.L. Progress in piezotronics and piezo-phototronics. Adv. Mater.
**2012**, 24, 4632–4646. [Google Scholar] [CrossRef] [PubMed] - Granet, I. Strength of Materials for Engineering Technology, 2nd ed.; Reston Pub. Co.: Reston, VA, USA, 1980. [Google Scholar]
- Wahl, A. Mechanical Springs; McGraw-Hill: New York, NY, USA, 1963; p. 119. [Google Scholar]
- Nguyen, V.; Zhu, R.; Jenkins, K.; Yang, R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun.
**2016**, 7, 13566. [Google Scholar] [CrossRef] [PubMed] - Wu, W.Z.; Wen, X.N.; Wang, Z.L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science
**2013**, 340, 952–957. [Google Scholar] [CrossRef] [PubMed] - Jenkins, K.; Nguyen, V.; Zhu, R.; Yang, R. Piezotronic effect: An emerging mechanism for sensing applications. Sensors
**2015**, 15, 22914–22940. [Google Scholar] [CrossRef] [PubMed] - Wang, Z.L.; Wu, W.Z. Piezotronics and piezo-phototronics: Fundamentals and applications. Natl. Sci. Rev.
**2014**, 1, 62–90. [Google Scholar] [CrossRef]

**Figure 1.**Schematic illustration of (

**a**) ZnO nanowire and (

**b**) ZnO nanohelix. Both nanostructures have a hexagonal cross-section with the same side length D and height L. The nanohelix has a number of coils T and a mean radius of coil R.

**Figure 2.**The piezoelectric potential distribution in (

**a**) ZnO nanowire and (

**b**) nanohelix under a compressing force of 100 nN along the z-axis.

**Figure 3.**The change of the maximum piezoelectric potential and displacement with the number of coils in (

**a**) and the mean coils radius in (

**b**) of ZnO nanohelices with a constant length of 1900 nm.

Parameters | Value |
---|---|

Density (kg/m^{3}) | 5680 |

Elastic constants | |

c_{11} (GPa) | 209.7 |

c_{12} (GPa) | 121.1 |

c_{13} (GPa) | 105.1 |

c_{33} (GPa) | 211.3 |

c_{44} (GPa) | 42.3 |

c_{55} (GPa) | 43.6 |

Piezoelectric constants | |

e_{31} (C/m^{2}) | −0.57 |

e_{33} (C/m^{2}) | 1.32 |

e_{15} (C/m^{2}) | −0.48 |

Relative dielectric constants | |

${\kappa}_{\perp}^{r}$ | 8.54 |

${\kappa}_{\parallel}^{r}$ | 10.20 |

Applied Force Components (nN) | Piezoelectric Potential (V) | Displacement (nm) | ||
---|---|---|---|---|

x-Axis | y-Axis | z-Axis | ||

0 | 0 | 100 | 1.85 | 10.2 |

0 | 100 | 0 | 0.35 | 48.3 |

100 | 0 | 0 | 0.29 | 47.3 |

100 | 100 | 0 | 0.48 | 67.8 |

100 | 0 | 100 | 1.85 | 37.6 |

0 | 100 | 100 | 1.60 | 49.4 |

100 | 100 | 100 | 1.60 | 61.6 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hao, H.; Jenkins, K.; Huang, X.; Xu, Y.; Huang, J.; Yang, R. Piezoelectric Potential in Single-Crystalline ZnO Nanohelices Based on Finite Element Analysis. *Nanomaterials* **2017**, *7*, 430.
https://doi.org/10.3390/nano7120430

**AMA Style**

Hao H, Jenkins K, Huang X, Xu Y, Huang J, Yang R. Piezoelectric Potential in Single-Crystalline ZnO Nanohelices Based on Finite Element Analysis. *Nanomaterials*. 2017; 7(12):430.
https://doi.org/10.3390/nano7120430

**Chicago/Turabian Style**

Hao, Huimin, Kory Jenkins, Xiaowen Huang, Yiqian Xu, Jiahai Huang, and Rusen Yang. 2017. "Piezoelectric Potential in Single-Crystalline ZnO Nanohelices Based on Finite Element Analysis" *Nanomaterials* 7, no. 12: 430.
https://doi.org/10.3390/nano7120430