Effect of Ge Nanocrystals on 1.54 μm Photoluminescence Enhancement in Er2O3:ZnO and Ge Co-Sputtered Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Douglas, L.; Mundle, R.; Konda, R.; Bonner, C.E.; Pradhan, A.K.; Sahu, D.R.; Huang, J. Influence of doping rate in Er3+: ZnO films on emission characteristics. Opt. Lett. 2008, 33, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.R.; Yoo, K.H.; Ahn, J.S.; Kim, C.; Park, S.M. 1.54 μm emission mechanism of Er-doped zinc oxide thin films. Appl. Surf. Sci. 2011, 257, 2822–2824. [Google Scholar] [CrossRef]
- Bubendorff, J.L.; Ebothé, J.; el Hichou, A.; Dounia, R.; Addou, M. Luminescent spectroscopy and imaging of textured sprayed Er-doped ZnO films in the near ultraviolet and visible regions. J. Appl. Phys. 2006, 100, 014505. [Google Scholar] [CrossRef]
- Conti, G.N.; Chiasera, A.; Brenci, M.; Ferrari, M.; Pelli, S.; Sebastiani, S.; Tosello, C.; Righini, G.C. Er3+/Yb3+-codoped silica-germania sputtered films: Structural and spectroscopic characterization. J. Non-Cryst. Solids 2006, 352, 2585–2588. [Google Scholar] [CrossRef]
- Takahei, K.; Taguchi, A. Selective formation of an efficient Er-O luminescence center in GaAs by metalorganic chemical vapor deposition under an atmosphere containing oxygen. J. Appl. Phys. 1993, 74, 1979–1982. [Google Scholar] [CrossRef]
- Ishii, M. Local structure analysis of an optically active center in Er-doped ZnO thin film. J. Appl. Phys. 2001, 89, 3679–3684. [Google Scholar] [CrossRef]
- Ko, Y.H.; Lee, S.H.; Yu, J.S. Performance enhanced piezoelectric ZnO nanogenerators with highly rough Au electrode surfaces on ZnO submicrorod arrays. Appl. Phys. Lett. 2013, 103, 022911. [Google Scholar]
- Trioloa, C.; Fazio, E.; Neri, F.; Mezzasalma, A.M.; Trusso, S.; Patanè, S. Correlation between structural and electrical properties of PLD prepared ZnO thin films used as a photodetector material. Appl. Surf. Sci. 2015, 359, 266–271. [Google Scholar] [CrossRef]
- Ahn, H.; Kao, N.; Liu, W.; Hsieh, W. THz Study on the Role of ZnO Crystallinity in ZnO/AgNW/ZnO Composite Electrodes. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 4800206. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, X.; Wang, H.; Wu, Y.; Hao, X.; Ji, Z.; Xu, X. Light transmission enhancement from hybrid ZnO micro-mesh and nanorod arrays with application to GaN-based light-emitting diodes. Opt. Express 2013, 21, 28531–28542. [Google Scholar] [CrossRef] [PubMed]
- Chiasera, A.; Macchi, C.; Mariazzi, S.; Valligatla, S.; Lunelli, L.; Pederzolli, C.; Rao, D.N.; Somoza, A.; Brusa, R.S.; Ferrari, M. CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering. Opt. Mater. Express 2013, 3, 1561–1570. [Google Scholar] [CrossRef]
- Zur, L.; Tran, L.T.N.; Meneghetti, M.; Tran, V.T.; Lukowiak, A.; Chiasera, A.; Zonta, D.; Ferrari, M.; Righini, G.C. Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: Formation of glass-ceramic thin films and their characterization. Opt. Mater. 2017, 63, 95–100. [Google Scholar] [CrossRef]
- Kik, P.G.; Brongersma, M.L.; Polman, A. Strong exciton-erbium coupling in Si nanocrystal-doped SiO2. Appl. Phys. Lett. 2000, 76, 2325–2327. [Google Scholar] [CrossRef]
- Izeddin, I.; Timmerman, D.; Gregorkiewicz, T. Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals. Phys. Rev. B 2008, 78, 035327. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, C.; Cheng, J.; Larsen, A.N. High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots. J. Alloys Compd. 2016, 676, 428–431. [Google Scholar] [CrossRef]
- Kenyon, A.J.; Trwoga, P.F.; Federighi, M.; Pitt, C.W. Optical properties of PECVD erbium-doped silicon-rich silica: Evidence for energy transfer between silicon microcIusters and erbium ions. J. Phys. Condens. Matter 1994, 6, L319–L324. [Google Scholar] [CrossRef]
- Henley, W.; Koshka, Y.; Lagowski, J.; Siejka, J. Infrared photoluminescence from Er doped porous Si. J. Appl. Phys. 2000, 87, 7848–7852. [Google Scholar] [CrossRef]
- Kenyon, A.J.; Chryssou, C.E.; Pitt, C.W.; Shimizu-Iwayama, T.; Hole, D.E.; Sharma, N.; Humphreys, C.J. Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms. J. Appl. Phys. 2002, 91, 367–374. [Google Scholar] [CrossRef]
- Timoshenko, V.Y.; Lisachenko, M.G.; Kamenev, B.V.; Shalygina, O.A.; Kashkarov, P.K.; Heitmann, J.; Schmidt, M.; Zacharias, M. Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures. Appl. Phys. Lett. 2004, 84, 2512–2514. [Google Scholar] [CrossRef]
- Takeoka, S.; Fujii, M.; Hayashi, S.; Yamamoto, K. Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Phys. Rev. B 1998, 58, 7921–7925. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Yin, Y.; Liu, T.; Lin, D.; Li, D.; Yang, X.; Jiang, Z.; Zhong, Z. Promising features of low-temperature grown Ge nanostructures on Si (001) substrates. Nanotechnology 2017, 28, 115701. [Google Scholar] [CrossRef] [PubMed]
- Skorupa, W.; Rebohle, L.; Gebel, T. Group-IV nanocluster formation by ion-beam synthesis. Appl. Phys. A 2003, 76, 1049–1059. [Google Scholar] [CrossRef]
- Choi, W.K.; Ho, V.; Ng, V.; Ho, Y.W.; Ng, S.P.; Chim, W.K. Germanium diffusion and nanocrystal formation in silicon oxide on silicon substrate under rapid thermal annealing. Appl. Phys. Lett. 2005, 86, 143114. [Google Scholar] [CrossRef]
- Avella, M.; Prietoa, A.C.; Jimemenez, J.; Rodriguez, A.; Sangrador, J.; Rodrguez, T. Violet luminescence in Ge nanocrystals/Ge oxide structures formed by dry oxidation of polycrystalline SiGe. Solid State Commun. 2005, 136, 224–227. [Google Scholar] [CrossRef]
- Agan, S.; Celik-Aktas, A.; Zuo, J.M.; Dana, A.; Aydinli, A. Synthesis and size differentiation of Ge nanocrystals in amorphous SiO2. Appl. Phys. A 2006, 83, 107–110. [Google Scholar] [CrossRef]
- Shih, G.H.; Allen, C.G.; Potter, B.G., Jr. Interfacial effects on the optical behavior of Ge:ITO and Ge:ZnO nanocomposite films. Nanotechnology 2012, 23, 075203. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, A.; Ali, J.M.; Ozcan, S. Synthesis of ZnO: Ge nanocomposite thin films by plasma gas condensation. Mater. Sci. Semicond. Process. 2013, 16, 424–428. [Google Scholar] [CrossRef]
- Maeda, Y.; Tsukamoto, N.; Yazawa, Y.; Kanemitsu, Y.; Masumoto, Y. Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl. Phys. Lett. 1991, 59, 3168–3170. [Google Scholar] [CrossRef] [Green Version]
- Maeda, Y. Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism. Phys. Rev. B 1995, 51, 1658–1670. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Malta, D.P.; Timmons, M.L.; Hutchby, J.A. Visible light emission from quantized planar Ge structures. Appl. Phys. Lett. 1991, 59, 1603–1605. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Morkoc, H.; Nemeth, B.; Nause, J.; Xie, J.; Hertog, B.; Osinsky, A. Luminescence properties of defects in ZnO. Phys. B 2007, 401–402, 358–361. [Google Scholar] [CrossRef]
- Takagahara, T.; Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 1992, 46, 15578–15581. [Google Scholar] [CrossRef]
- Kanemitsu, Y.; Uto, H.; Masumoto, Y.; Maeda, Y. On the origin of visible photoluminescence in nanometer-size Ge crystallites. Appl. Phys. Lett. 1992, 61, 2187–2189. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Kanemitus, Y. Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons. Phys. Rev. B 1996, 54, 16421–16424. [Google Scholar] [CrossRef]
- Paine, D.C.; Caragianis, C.; Kim, T.Y.; Shigesato, Y.; Ishahara, T. Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2. Appl. Phys. Lett. 1993, 62, 2842–2844. [Google Scholar] [CrossRef]
- Zhou, Z.; Komori, T.; Ayukawa, T.; Yukawa, H.; Morinaga, M.; Koizumi, A.; Takeda, Y. Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission. Appl. Phys. Lett. 2005, 87, 091109. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, R.; Lu, F.; Li, K. Effect of Ge Nanocrystals on 1.54 μm Photoluminescence Enhancement in Er2O3:ZnO and Ge Co-Sputtered Films. Nanomaterials 2017, 7, 311. https://doi.org/10.3390/nano7100311
Fan R, Lu F, Li K. Effect of Ge Nanocrystals on 1.54 μm Photoluminescence Enhancement in Er2O3:ZnO and Ge Co-Sputtered Films. Nanomaterials. 2017; 7(10):311. https://doi.org/10.3390/nano7100311
Chicago/Turabian StyleFan, Ranran, Fei Lu, and Kaikai Li. 2017. "Effect of Ge Nanocrystals on 1.54 μm Photoluminescence Enhancement in Er2O3:ZnO and Ge Co-Sputtered Films" Nanomaterials 7, no. 10: 311. https://doi.org/10.3390/nano7100311
APA StyleFan, R., Lu, F., & Li, K. (2017). Effect of Ge Nanocrystals on 1.54 μm Photoluminescence Enhancement in Er2O3:ZnO and Ge Co-Sputtered Films. Nanomaterials, 7(10), 311. https://doi.org/10.3390/nano7100311