Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Preparation of the QDs-Sensitized Solar Cells
3.2. Measurement and Equipment
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. J. Am. Chem. Soc. 2006, 128, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Titanium Dioxide Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Mora-Sero, I.; Gimenez, S.; Fabregat-Santiago, F.; Gomez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Recombination in Quantum Dot Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Jennings, J.R.; Shen, C.; Pan, J.H.; Koh, Z.Y.; Mathews, N.; Wang, Q. CdSe-Sensitized Mesoscopic TiO2 Solar Cells Exhibiting >5% Efficiency: Redundancy of CdS Buffer Layer. J. Mater. Chem. 2012, 22, 16235–16242. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Lo, Y.-S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Adv. Funct. Mater. 2009, 19, 604–609. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Liao, J.-Y.; Qiu, K.-Q.; Kuang, D.-B.; Su, C.-Y. Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition. ACS Nano 2011, 5, 9494–9500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, X.; Yang, Y.; Wang, S.; Gong, Y.; Luo, Y.; Li, D.; Meng, Q. Investigation on New CuInS2/Carbon Composite Counter Electrodes for CdS/CdSe Cosensitized Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 5954–5960. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, R.J.; Beard, M.C.; Johnson, J.C.; Yu, P.; Micic, O.I.; Nozik, A.J.; Shabaev, A.; Efros, A.L. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots. Nano Lett. 2005, 5, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Nozik, A.; Beard, M.; Luther, J.; Law, M. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chem. Rev. 2010, 110, 6873–6890. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, C.Y.; Roy, P.; Chang, H.T. Quantum Dot-Sensitized Solar Cells Incorporating Nanomaterials. Chem. Commun. 2011, 47, 9561–9571. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, H.; Fuke, N.; Makarov, N.S.; Pietryga, J.M.; Klimov, V.I. An Integrated Approach to Realizing High-Performance Liquid-Junction Quantum Dot Sensitized Solar Cells. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wei, H.; Luo, Y.; Wu, H.; Li, D.; Zhong, X.; Meng, Q. A Strategy to Boost the Cell Performance of CdSexTe1−x Quantum Dot Sensitized Solar Cells over 8% by Introducing Mn Modified CdSe Coating Layer. J. Power Sources 2016, 302, 266–273. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Shen, Q.; Izuishi, T.; Pan, Z.; Zhao, K.; Zhong, X. Mn Doped Quantum Dot Sensitized Solar Cells with Power Conversion Efficiency Exceeding 9%. J. Mater. Chem. A 2016, 4, 877–886. [Google Scholar] [CrossRef]
- Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Sun, L.; Ågren, H. Pure Organic Redox Couple for Quantum-Dot-Sensitized Solar Cells. Chem. Eur. J. 2011, 17, 6330–6333. [Google Scholar] [CrossRef] [PubMed]
- Lightcap, I.V.; Kamat, P.V. Fortification of CdSe Quantum Dots with Graphene Oxide. Excited State Interactions and Light Energy Conversion. J. Am. Chem. Soc. 2012, 134, 7109–7116. [Google Scholar] [CrossRef] [PubMed]
- Farrow, B.; Kamat, P.V. CdSe Quantum Dot Sensitized Solar Cells. Shuttling Electrons through Stacked Carbon Nanocups. J. Am. Chem. Soc. 2009, 131, 11124–11131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, G.; Yang, Y.; Shen, X.; Zhang, Y.; Li, C.; Yu, R.; Luo, Y.; Li, D.; Meng, Q. Toward Highly Efficient CdS/CdSe Quantum Dots-Sensitized Solar Cells Incorporating Ordered Photoanodes on Transparent Conductive Substrates. Phys. Chem. Chem. Phys. 2012, 14, 6479–6486. [Google Scholar] [CrossRef] [PubMed]
- Salant, A.; Shalom, M.; Tachan, Z.; Buhbut, S.; Zaban, A.; Banin, U. Quantum Rod-Sensitized Solar Cell: Nanocrystal Shape Effect on the Photovoltaic Properties. Nano Lett. 2012, 12, 2095–2100. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Yuan, C.; Tian, H.; Hedstrom, P.; Sun, L.; Ågren, H. Quantum Rod-Sensitized Solar Cells. ChemSusChem 2011, 4, 1741–1744. [Google Scholar] [CrossRef] [PubMed]
- Nazeeruddin, M.K.; Pechy, P.; Renouard, T.; Zakeeruddin, S.M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc. 2001, 123, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T.; Dy, J.T.; Uchida, S.; Kubo, T.; Segawa, H. Wideband Dye-Sensitized Solar Cells Employing a Phosphine-Coordinated Ruthenium Sensitizer. Nat. Photonics 2013, 7, 535–539. [Google Scholar] [CrossRef]
- Yuan, C.Z.; Chen, G.Y.; Prasad, P.N.; Ohulchanskyy, T.Y.; Ning, Z.J.; Tian, H.N.; Sun, L.C.; Ågren, H. Use of Colloidal Upconversion Nanocrystals for Energy Relay Solar Cell Light Harvesting in the near-Infrared Region. J. Mater. Chem. 2012, 22, 16709–16713. [Google Scholar] [CrossRef]
- Kim, S.; Fisher, B.; Eisler, H.-J.; Bawendi, M. Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Qin, H.; Sun, L.; Ågren, H. Solar Cells Sensitized with Type-II ZnSe-CdS Core/Shell Colloidal Quantum Dots. Chem. Commun. 2011, 47, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhao, K.; Wang, J.; Zhang, H.; Feng, Y.; Zhong, X. Near Infrared Absorption of CdSexTe1−x Alloyed Quantum Dot Sensitized Solar Cells with More Than 6% Efficiency and High Stability. ACS Nano 2013, 7, 5215–5222. [Google Scholar] [CrossRef] [PubMed]
- Tubtimtae, A.; Wu, K.-L.; Tung, H.-Y.; Lee, M.-W.; Wang, G.J. Ag2S Quantum Dot-Sensitized Solar Cells. Electrochem. Commun. 2010, 12, 1158–1160. [Google Scholar] [CrossRef]
- Parsi Benehkohal, N.; González-Pedro, V.; Boix, P.P.; Chavhan, S.; Tena-Zaera, R.; Demopoulos, G.P.; Mora-Seró, I. Colloidal PbS and PbSeS Quantum Dot Sensitized Solar Cells Prepared by Electrophoretic Deposition. J. Phys. Chem. C 2012, 116, 16391–16397. [Google Scholar] [CrossRef]
- Long, R.; Prezhdo, O.V. Ab Initio Nonadiabatic Molecular Dynamics of the Ultrafast Electron Injection from a PbSe Quantum Dot into the TiO2 Surface. J. Am. Chem. Soc. 2011, 133, 19240–19249. [Google Scholar] [CrossRef] [PubMed]
- Sambur, J.B.; Novet, T.; Parkinson, B.A. Multiple Exciton Collection in a Sensitized Photovoltaic System. Science 2010, 330, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.; Giménez, S.; Concina, I.; Vomiero, A.; Mora-Seró, I. Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 electrodes. J. Phys. Chem. Lett. 2011, 2, 454–460. [Google Scholar] [CrossRef]
- Ma, W.; Luther, J.M.; Zheng, H.; Wu, Y.; Alivisatos, A.P. Photovoltaic Devices Employing Ternary PbSxSe1−x Nanocrystals. Nano Lett. 2009, 9, 1699–1703. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Leventis, H.C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S.A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S.M.; et al. PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”. Adv. Funct. Mater. 2009, 19, 2735–2742. [Google Scholar] [CrossRef]
- Gonzalez-Pedro, V.; Sima, C.; Marzari, G.; Boix, P.P.; Gimenez, S.; Shen, Q.; Dittrich, T.; Mora-Sero, I. High Performance PbS Quantum Dot Sensitized Solar Cells Exceeding 4% Efficiency: The Role of Metal Precursors in the Electron Injection and Charge Separation. Phys. Chem. Chem. Phys. 2013, 15, 13835–13843. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Son, D.Y.; Ahn, T.K.; Shin, H.W.; Kim, I.Y.; Hwang, S.J.; Ko, M.J.; Sul, S.; Han, H.; Park, N.G. Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Wang, L.; Gao, R.; Ma, B.; Dong, H.; Qiu, Y. Inorganic Iodide Ligands in Ex Situ PbS Quantum Dot Sensitized Solar Cells with I−/I3− Electrolytes. J. Mater. Chem. 2012, 22, 16914–16919. [Google Scholar] [CrossRef]
- Ip, A.H.; Thon, S.M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L.R.; Carey, G.H.; Fischer, A.; et al. Hybrid Passivated Colloidal Quantum Dot Solids. Nat. Nanotechnol. 2012, 7, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; et al. Colloidal-Quantum-Dot Photovoltaics Using Atomic-Ligand Passivation. Nat. Mater. 2011, 10, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Zhitomirsky, D.; Adinolfi, V.; Sutherland, B.; Xu, J.; Voznyy, O.; Maraghechi, P.; Lan, X.; Hoogland, S.; Ren, Y.; et al. Graded Doping for Enhanced Colloidal Quantum Dot Photovoltaics. Adv. Mater. 2013, 25, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S.G.; Eychmuller, A.; Grätzel, M. Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO2 Heterojunction Solar Cells. ACS Nano 2012, 6, 3092–3099. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Garcia de Arquer, F.P.; Yoon, Y.J.; Lan, X.; Liu, M.; Voznyy, O.; Yang, Z.; Fan, F.; Ip, A.H.; Kanjanaboos, P.; et al. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Lett. 2015, 15, 7691–7696. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Voznyy, O.; Kiani, A.; Garcia de Arquer, F.P.; Abbas, A.S.; Kim, G.H.; Liu, M.; Yang, Z.; Walters, G.; Xu, J.; et al. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance. Adv. Mater. 2016, 28, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, H.; Nahm, C.; Kim, C.; Ik Kim, J.; Lee, W.; Kang, S.; Lee, B.; Hwang, T.; Hejin Park, H.; et al. Graded Bandgap Structure for PbS/CdS/ZnS Quantum-Dot-Sensitized Solar Cells with a PbxCd1−xS Interlayer. Appl. Phys. Lett. 2013, 102. [Google Scholar] [CrossRef]
- Santra, P.K.; Kamat, P.V. Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides. J. Am. Chem. Soc. 2013, 135, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Wang, M.; Chen, P.; Gamelin, D.R.; Zakeeruddin, S.M.; Grätzel, M.; Nazeeruddin, M.K. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process. Nano Lett. 2009, 9, 4221–4227. [Google Scholar] [CrossRef] [PubMed]
- Shu, T.; Zhou, Z.-M.; Wang, H.; Liu, G.-H.; Xiang, P.; Rong, Y.-G.; Zhao, Y.-D.; Han, H.-W. Efficient CdPbS Quantum Dots-Sensitized TiO2 Photoelectrodes for Solar Cell Applications. J. Nanosci. Nanotechnol. 2011, 11, 9645–9649. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Mehra, R.M.; Kapoor, A.; Soga, T. ZnO Based Quantum Dot Sensitized Solar Cell Using CdS Quantum Dots. J. Renew. Sustain. Energy 2012, 4. [Google Scholar] [CrossRef]
- Gocalińska, A.; Saba, M.; Quochi, F.; Marceddu, M.; Szendrei, K.; Gao, J.; Loi, M.A.; Yarema, M.; Seyrkammer, R.; Heiss, W.; et al. Size-Dependent Electron Transfer from Colloidal PbS Nanocrystals to Fullerene. J. Phys. Chem. Lett. 2010, 1, 1149–1154. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A.; Wood, D.L. Optical and Magnetic Investigations of the Localized States in Semiconducting Glasses. Phys. Rev. Lett. 1970, 25, 749–752. [Google Scholar] [CrossRef]
- Huang, Z.; Zou, X.; Zhou, H. A Strategy to Achieve Superior Photocurrent by Cu-Doped Quantum Dot Sensitized Solar Cells. Mater. Lett. 2013, 95, 139–141. [Google Scholar] [CrossRef]
- Haram, S.K.; Kshirsagar, A.; Gujarathi, Y.D.; Ingole, P.P.; Nene, O.A.; Markad, G.B.; Nanavati, S.P. Quantum Confinement in CdTe Quantum Dots: Investigation through Cyclic Voltammetry Supported by Density Functional Theory. J. Phys. Chem. C 2011, 115, 6243–6249. [Google Scholar] [CrossRef]
- Lee, M.S.; Cheon, I.C.; Kim, Y.I. Photoelectrochemical Studies of Nanocrystalline TiO2 Film Electrodes. Bull. Korean Chem. Soc. 2003, 24, 1155–1162. [Google Scholar]
- Xu, Y.; Schoonen, M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical Cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V. Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Murakami, T.N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M.K.; Grätzel, M. Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency over 10%. Thin Solid Films 2008, 516, 4613–4619. [Google Scholar] [CrossRef]
- Gimenez, S.; Mora-Sero, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gomez, R.; Diguna, L.J.; Shen, Q.; Toyoda, T.; Bisquert, J. Improving the Performance of Colloidal Quantum-Dot-Sensitized Solar Cells. Nanotechnology 2009, 20. [Google Scholar] [CrossRef] [PubMed]
- Esswein, A.J.; Surendranath, Y.; Reece, S.Y.; Nocera, D.G. Highly Active Cobalt Phosphate and Borate Based Oxygen Evolving Catalysts Operating in Neutral and Natural Waters. Energy Environ. Sci. 2011, 4, 499–504. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Li, L.; Huang, J.; Ning, Z.; Sun, L.; Ågren, H. Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers. Nanomaterials 2016, 6, 97. https://doi.org/10.3390/nano6060097
Yuan C, Li L, Huang J, Ning Z, Sun L, Ågren H. Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers. Nanomaterials. 2016; 6(6):97. https://doi.org/10.3390/nano6060097
Chicago/Turabian StyleYuan, Chunze, Lin Li, Jing Huang, Zhijun Ning, Licheng Sun, and Hans Ågren. 2016. "Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers" Nanomaterials 6, no. 6: 97. https://doi.org/10.3390/nano6060097
APA StyleYuan, C., Li, L., Huang, J., Ning, Z., Sun, L., & Ågren, H. (2016). Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers. Nanomaterials, 6(6), 97. https://doi.org/10.3390/nano6060097