Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. NC Synthesis
2.2. Post-Synthetic NC Treatment
2.3. Optimal Initial Solar Cell Performance
2.4. Influence of the Post-Synthetic NC Treatment on the Device Annealing Time, and Guidance for NC Treatment
2.5. Influence of NC Treatment on Solar Cell Long-Term Performance Stability
2.6. Influence of NC Treatment on the Solar Cell Performance Stability in Air
3. Methods
3.1. Post-Synthetic NC Treatment
3.2. Solar Cell Fabrication
3.3. Solar Cell Characterization
3.4. Dynamic Light Scattering (DLS)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
NC | Nanocrystal |
BHJ | Bulk heterojunction |
PCPDTBT | (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]) |
PEDOT:PSS | (Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)) |
PCE | Power conversion efficiency |
QD | Quantum dot |
NR | Nanorod |
MP | Multipod |
HDA | Hexadecylamine |
TOPO | Trioctylphosphine oxide |
HA | Hexanoic acid |
PL | Photoluminescence |
Cd-SA | Cadmium-stearic acid |
TOP-Se | Trioctylphosphine-selenid |
UV-Vis | Ultraviolet-visible |
FWHM | Full width at half maximum |
CB | Chlorobenzene |
MeOH | Methanol |
DLS | Dynamic light scattering |
A.U. | Absorbance units |
ITO | Indium tin oxide |
QY | Quantum yield |
VOC | Open-circuit voltage |
FF | Fill factor |
JSC | Short-circuit current density |
RS | Series resistance |
RP | Parallel resistance |
References
- Zhou, Y.; Eck, M.; Krueger, M. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ. Sci. 2010, 3, 1851–1864. [Google Scholar] [CrossRef]
- Greenham, N.C.; Peng, X.; Alivisatos, A.P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54, 17628–17637. [Google Scholar] [CrossRef]
- Ren, S.; Chang, L.-Y.; Lim, S.-K.; Zhao, J.; Smith, M.; Zhao, N.; Bulović, V.; Bawendi, M.; Gradečak, S. Inorganic–organic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires. Nano Lett. 2011, 11, 3998–4002. [Google Scholar] [CrossRef]
- Greaney, M.J.; Araujo, J.; Burkhart, B.; Thompson, B.C.; Brutchey, R.L. Novel semi-random and alternating copolymer hybrid solar cells utilizing CdSe multipods as versatile acceptors. Chem. Commun. 2013, 49, 8602. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Stalder, R.; Xie, D.; Cao, W.; Zheng, Y.; Yang, Y.; Plaisant, M.; Holloway, P.H.; Schanze, K.S.; Reynolds, J.R.; et al. Enhancing the efficiency of solution-processed polymer: Colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment. ACS Nano 2013, 7, 4846–4854. [Google Scholar] [CrossRef] [PubMed]
- Eck, M.; van Pham, C.; Züfle, S.; Neukom, M.; Sessler, M.; Scheunemann, D.; Erdem, E.; Weber, S.; Borchert, H.; Ruhstaller, B.; et al. Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot-graphene nanocomposites. Phys. Chem. Chem. Phys. 2014, 16, 12251–12260. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Qin, D.; Jiang, X.; Liu, Y.; Wang, L.; Chen, J.; Cao, Y. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology 2006, 17, 4736–4742. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, M.D.; von Maydell, K.; Zutz, F.; Kolny-Olesiak, J.; Borchert, H.; Riedel, I.; Parisi, J. Photo-induced charge transfer and relaxation of persistent charge carriers in polymer/nanocrystal composites for applications in hybrid solar cells. Adv. Funct. Mater. 2009, 19, 3788–3795. [Google Scholar] [CrossRef]
- Olson, J.D.; Gray, G.P.; Carter, S.A. Optimizing hybrid photovoltaics through annealing and ligand choice. Sol. Energy Mater. Sol. Cells 2009, 93, 519–523. [Google Scholar] [CrossRef]
- Dayal, S.; Reese, M.O.; Ferguson, A.J.; Ginley, D.S.; Rumbles, G.; Kopidakis, N. The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of poly(3-hexylthiophene):CdSe nanoparticle bulk heterojunction solar cells. Adv. Funct. Mater. 2010, 20, 2629–2635. [Google Scholar] [CrossRef]
- Zhou, Y.; Riehle, F.S.; Yuan, Y.; Schleiermacher, H.-F.; Niggemann, M.; Urban, G.A.; Krueger, M. Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene). Appl. Phys. Lett. 2010, 96. [Google Scholar] [CrossRef]
- Zhou, Y.; Eck, M.; Veit, C.; Zimmermann, B.; Rauscher, F.; Niyamakom, P.; Yilmaz, S.; Dumsch, I.; Allard, S.; Scherf, U.; et al. Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT. Sol. Energy Mater. Sol. Cells 2011, 95, 1232–1237. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Greenham, N.C. Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys. Chem. Chem. Phys. 2006, 8, 3557–3560. [Google Scholar] [CrossRef] [PubMed]
- Celik, D.; Krueger, M.; Veit, C.; Schleiermacher, H.F.; Zimmermann, B.; Allard, S.; Dumsch, I.; Scherf, U.; Rauscher, F.; Niyamakom, P. Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments. Sol. Energy Mater. Sol. Cells 2012, 98, 433–440. [Google Scholar] [CrossRef]
- Sun, B.Q.; Marx, E.; Greenham, N.C. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 2003, 3, 961–963. [Google Scholar] [CrossRef]
- Sun, B.; Snaith, H.J.; Dhoot, A.S.; Westenhoff, S.; Greenham, N.C. Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys. 2005, 97. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Zhong, H.; Hou, J.; Ding, Y.; Yang, C.; Li, Y. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSex Te1−x nanocrystals. Nanotechnology 2006, 17, 4041–4047. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Abrusci, A.; Wong, H.M.P.; Svensson, M.; Andersson, M.R.; Greenham, N.C. Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett. 2006, 6, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Dayal, S.; Kopidakis, N.; Olson, D.C.; Ginley, D.S.; Rumbles, G. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett. 2010, 10, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Peet, J.; Kim, J.Y.; Coates, N.E.; Ma, W.L.; Moses, D.; Heeger, A.J.; Bazan, G.C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Zillner, E.; Fengler, S.; Niyamakom, P.; Rauscher, F.; Köhler, K.; Dittrich, T. Role of ligand exchange at CdSe quantum dot layers for charge separation. J. Phys. Chem. C 2012, 116, 16747–16754. [Google Scholar] [CrossRef]
- Riehle, F.S. The Rational Synthesis Of Defect-Free CdE (E=S,Se) Nanocrystals. From Precursor Reactivity to Surface Stability. Ph.D. Thesis, University of Freiburg, Freiburg im Breisgau, Germany, 2013. [Google Scholar]
- Gao, F.; Li, Z.; Wang, J.; Rao, A.; Howard, I.A.; Abrusci, A.; Massip, S.; McNeill, C.R.; Greenham, N.C. Trap-induced losses in hybrid photovoltaics. ACS Nano 2014, 8, 3213–3221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Richardson, B.J.; Yu, Q. Inverted hybrid CdSe-polymer solar cells adopting PEDOT:PSS/MoO3 as dual hole transport layers. Phys. Chem. Chem. Phys. 2016, 18, 3463–3471. [Google Scholar] [CrossRef] [PubMed]
- Ramar, M.; Suman, C.K.; Manimozhi, R.; Ahamad, R.; Srivastava, R. Study of Schottky contact in binary and ternary hybrid CdSe quantum dot solar cells. RSC Adv. 2014, 4, 32651–32657. [Google Scholar] [CrossRef]
- Lek, J.Y.; Lam, Y.M.; Niziol, J.; Marzec, M. Understanding polycarbazole-based polymer: CdSe hybrid solar cells. Nanotechnology 2012, 23. [Google Scholar] [CrossRef] [PubMed]
- Kippelen, B.; Brédas, J.-L. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251–261. [Google Scholar] [CrossRef]
- Steinmann, V.; Kronenberg, N.M.; Lenze, M.R.; Graf, S.M.; Hertel, D.; Meerholz, K.; Bürckstümmer, H.; Tulyakova, E.V.; Würthner, F. Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes. Adv. Energy Mater. 2011, 1, 888–893. [Google Scholar] [CrossRef]
- Yuan, Y.; Riehle, F.-S.; Gu, H.; Thomann, R.; Urban, G.; Krueger, M. Critical parameters for the scale-up synthesis of quantum dots. J. Nanosci. Nanotechnol. 2010, 10, 6041–6045. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Krueger, M.; Eck, M.; Zhou, Y.; Riehle, F.-S. Semiconducting nanocrystal/conjugated polymer composites for applications in hybrid polymer solar cells. In Semiconducting Polymer Composites; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 361–397. [Google Scholar]
- Eichhöfer, A.; Hänisch, C.V.; Jacobsohn, M.; Banin, U. Dynamic light scattering at CdSe nanocrystals and CdSe cluster-molecules. In Proceedings of the MRS Fall Meeting 2000, Boston, MA, USA, 27–30 November 2000; Karim, A., Merhari, L., Norris, D.J., Rogers, J.A., Xia, Y., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. D9.53.1–D9.53.9. [Google Scholar]
- Shen, Y.; Li, K.; Majumdar, N.; Campbell, J.C.; Gupta, M.C. Bulk and contact resistance in P3HT:PCBM heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2314–2317. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kim, B.-G.; Kim, J. Effective variables to control the fill factor of organic photovoltaic cells. ACS Appl. Mater. Interfaces 2009, 1, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Schafferhans, J.; Baumann, A.; Wagenpfahl, A.; Deibel, C.; Dyakonov, V. Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance. Org. Electron. 2010, 11, 1693–1700. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Brzozowski, L.; Barkhouse, D.A.; Debnath, R.; Levina, L.; Sargent, E.H. Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 2010, 22, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Lim, K.-G.; Shim, M.; Moon, H.C.; Park, J.; Jeon, G.; Shin, J.; Cho, K.; Lee, T.-W.; Kim, J.K. Air-stable inverted structure of hybrid solar cells using a cesium-doped ZnO electron transport layer prepared by a sol–gel process. J. Mater. Chem. A 2013, 1. [Google Scholar] [CrossRef]
- Züfle, S.; Neukom, M.T.; Altazin, S.; Zinggeler, M.; Chrapa, M.; Offermans, T.; Ruhstaller, B. An effective area approach to model lateral degradation in organic solar cells. Adv. Energy Mater. 2015, 5. [Google Scholar] [CrossRef]
- Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D.D.; Durrant, J.R. Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells 2006, 90, 3520–3530. [Google Scholar] [CrossRef]
Cd:Se Precursor Ratio | Brightpoint (min) | PL Peak Position (nm) | FWHM (nm) | PL QY (%) | Optimal HA Washing Time (min) | PCE with Optimal NC Treatment Time (%) |
---|---|---|---|---|---|---|
3:2 | 17 | 647 ± 7 | 30.7 ± 0.8 | 24 ± 5 | 21 | 2.4 ± 0.10 |
2:2 | 21 | 650 ± 3 | 27.0 ± 0.7 | 25 ± 5 | 18 | 2.8 ± 0.18 |
2:3 | 60 | 646 ± 5 | 32.2 ± 0.9 | 37 ± 8 | 60 | 1.7 ± 0.04 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eck, M.; Krueger, M. Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance. Nanomaterials 2016, 6, 115. https://doi.org/10.3390/nano6060115
Eck M, Krueger M. Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance. Nanomaterials. 2016; 6(6):115. https://doi.org/10.3390/nano6060115
Chicago/Turabian StyleEck, Michael, and Michael Krueger. 2016. "Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance" Nanomaterials 6, no. 6: 115. https://doi.org/10.3390/nano6060115
APA StyleEck, M., & Krueger, M. (2016). Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance. Nanomaterials, 6(6), 115. https://doi.org/10.3390/nano6060115