Synthesis of Nickel Nanowires with Tunable Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reaction Temperature Control
2.2. Reaction Time Length Control
2.3. Surfactant Concentration Control
2.4. Purity and Magnetic Properties
2.5. Reaction Mechanism
3. Experimental Section
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Zhou, W.; He, L.; Cheng, R.; Guo, L.; Chen, C.; Wang, J. Synthesis of Ni nanochains with various sizes: The magnetic and catalytic properties. J. Phys. Chem. C 2009, 113, 17355–17358. [Google Scholar] [CrossRef]
- Wang, C.; Han, X.; Xu, P.; Wang, J.; Du, Y.; Wang, X.; Qin, W.; Zhang, T. Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 2010, 114, 3196–3203. [Google Scholar] [CrossRef]
- Park, J.; Kang, E.; Son, S.U.; Park, H.M.; Lee, M.K.; Kim, J.; Kim, K.W.; Noh, H.J.; Park, J.H.; Bae, C.J.; et al. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17, 429–434. [Google Scholar] [CrossRef]
- Metin, O.; Mazumder, V.; Ozkar, S.; Sun, S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Polizu, S.; Turenne, S.; Yahia, L. Characteristics of porous nickel-titanium alloys for medical applications. Bio-Med. Mater. Eng. 2002, 12, 37–45. [Google Scholar]
- An, Z.; Pan, S.; Zhang, J. Synthesis and tunable assembly of spear-like nickel nanocrystallites: From urchin-like particles to prickly chains. J. Phys. Chem. C 2009, 113, 1346–1351. [Google Scholar] [CrossRef]
- Leng, Y.; Li, Y.; Li, X.; Takahashhi, S. Improved magnetic anisotropy of monodispersed triangular nickel nanoplates. J. Phys. Chem. C 2007, 111, 6630–6633. [Google Scholar] [CrossRef]
- Ni, X.; Zhao, Q.; Zhang, D.; Zhang, X.; Zheng, H. Novel hierarchical nanostructures of nickel: Self-assembly of hexagonal nanoplatelets. J. Phys. Chem. C 2007, 111, 601–605. [Google Scholar] [CrossRef]
- Liu, C.M.; Guo, L.; Wang, R.M.; Deng, Y.; Xu, H.B.; Yang, S. Magnetic nanochains of metal formed by assembly of small nanoparticles. Chem. Commun. 2004, 23, 2726–2727. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.P.; Li, S.; Yang, Y.; Peng, S.; Hu, Z.K.; Qian, Y.T. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts. Adv. Mater. 2003, 15, 1946–1948. [Google Scholar] [CrossRef]
- Bao, J.; Tie, C.; Xu, Z.; Zhou, Q.; Shen, D.; Ma, Q. Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv. Mater. 2001, 13, 1631–1633. [Google Scholar] [CrossRef]
- Cordente, N.; Respaud, M.; Senocq, F.; Casanove, M.J.; Amiens, C.; Chaudret, B. Synthesis and magnetic properties of nickel nanorods. Nano Lett. 2001, 1, 565–568. [Google Scholar] [CrossRef]
- Bradley, J.S.; Tesche, B.; Busser, W.; Maase, M.; Reetz, M.T. Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. J. Am. Chem. Soc. 2000, 122, 4631–4636. [Google Scholar] [CrossRef]
- Bao, J.C.; Liang, Y.Y.; Xu, Z.; Si, L. Facile synthesis of hollow nickel submicrometer spheres. Adv. Mater. 2003, 15, 1832–1835. [Google Scholar] [CrossRef]
- Xu, W.; Liew, K.Y.; Liu, H.; Huang, T.; Sun, C.; Zhao, Y. Microwave-assisted synthesis of nickel nanoparticles. Mater. Lett. 2008, 62, 2571–2573. [Google Scholar] [CrossRef]
- Tang, S.; Vongehr, S.; Ren, H.; Meng, X. Diameter-controlled synthesis of polycrystalline nickel nanowires and their size dependent magnetic properties. CrystEngComm 2012, 14, 7209–7216. [Google Scholar] [CrossRef]
- Nassima, O.; Samir, F.; Silvana, M.; Fatih, Z.; Frédéric, S.; Noureddine, J.; Ivaylo, H.; Guillaume, W.; Christian, R. Magnetic nanowire synthesis: A chemical engineering approach. AlChE J. 2015, 61, 304–316. [Google Scholar] [CrossRef]
- Yalçın, O.; Kartopu, G.; Çetin, H.; Demiray, A.S.; Kazan, S. A comparison of the magnetic properties of Ni and Co nanowires deposited in different templates and on different substrates. J. Magn. Magn. Mater. 2015, 373, 207–212. [Google Scholar] [CrossRef]
- Krishnadas, K.R.; Sajanlal, P.; Pradeep, T. Pristine and hybrid nickel nanowires: Template-, magnetic field-, and surfactant-free wet chemical synthesis and Raman studies. J. Phys. Chem. C 2011, 115, 4483–4490. [Google Scholar] [CrossRef]
- Pradhan, B.K.; Kyotani, T.; Tomita, A. Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem. Commun. 1999, 14, 1317–1318. [Google Scholar] [CrossRef]
- Tian, F.; Zhu, J.; Wei, D. Phase transition and magnetism of Ni nanowire arrays. J. Phys. Chem. C 2007, 111, 6994–6997. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, R.; Liu, X.; Lin, D.; Pan, W. Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19, 3506–3511. [Google Scholar] [CrossRef]
- Barakat, N.A.; Kim, B.; Kim, H.Y. Production of smooth and pure nickel metal nanofibers by the electrospinning technique: Nanofibers possess splendid magnetic properties. J. Phys. Chem. C 2008, 113, 531–536. [Google Scholar] [CrossRef]
- Faivre, D. Formation of magnetic nanoparticle chains in bacterial systems. MRS Bull. 2015, 40, 509–515. [Google Scholar] [CrossRef]
- Hu, X.; Yu, J.C. High-yield synthesis of nickel and nickel phosphide nanowires via microwave-assisted processes. Chem. Mater. 2008, 20, 6743–6749. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Q.; Tang, Y.; Xiong, Y. Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. Chem. Commun. 2007, 27, 2844–2846. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Liu, H.; Yang, L.; Liu, J. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates. J. Mater. Chem. 2012, 22, 19932–19939. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, T.; Lu, X.; Wang, W.; Qu, J.; Li, X. Controlled synthesis of 3D and 1D nickel nanostructures using an external magnetic field assisted solution-phase approach. J. Phys. Chem. C 2007, 111, 12663–12668. [Google Scholar] [CrossRef]
- Sarkar, S.; Sinha, A.K.; Pradhan, M.; Basu, M.; Negishi, Y.; Pal, T. Redox transmetalation of prickly nickel nanowires for morphology controlled hierarchical synthesis of nickel/gold nanostructures for enhanced catalytic activity and SERS responsive functional material. J. Phys. Chem. C 2010, 115, 1659–1673. [Google Scholar] [CrossRef]
- Ding, Q.; Ma, Y.; Ye, Y.; Yang, L.; Liu, J. A simple method to prepare the magnetic Ni@Au core-shell nanostructure for the cycle surface enhanced Raman scattering substrates. J. Raman Spectrosc. 2013, 44, 987–993. [Google Scholar] [CrossRef]
- Gong, C.; Yu, L.; Duan, Y.; Tian, J.; Wu, Z.; Zhang, Z. The fabrication and magnetic properties of Ni fibers synthesized under external magnetic fields. Eur. J. Inorg. Chem. 2008, 2008, 2884–2891. [Google Scholar] [CrossRef]
- Jia, F.L.; Zhang, L.Z.; Shang, X.Y.; Yang, Y. Non-aqueous sol–gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers. Adv. Mater. 2008, 20, 1050–1054. [Google Scholar] [CrossRef]
- Kong, Y.Y.; Pang, S.C.; Chin, S.F. Facile synthesis of nickel nanowires with controllable morphology. Mater. Lett. 2015, 142, 1–3. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg. Chem. 1995, 34, 28–35. [Google Scholar] [CrossRef]
- Liu, N.; Li, J.; Ma, W.; Liu, W.; Shi, Y.; Tao, J.; Zhang, X.; Su, J.; Li, L.; Gao, Y. Ultrathin and lightweight 3D free-standing Ni@NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates. ACS Appl. Mater. Interfaces 2014, 6, 13627–13634. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Zhang, J.; Zhang, X.; Yu, L.; Zhang, P.; Wu, Z.; Zhang, Z. Strategy for ultrafine Ni fibers and investigation of the electromagnetic characteristics. J. Phys. Chem. C 2010, 114, 10101–10107. [Google Scholar] [CrossRef]
- Zhao, B.; Fan, B.; Shao, G.; Wang, B.; Pian, X.; Li, W.; Zhang, R. Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method. Appl. Surf. Sci. 2014, 307, 293–300. [Google Scholar] [CrossRef]
- Wu, S.H.; Chen, D.H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 2003, 259, 282–286. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Q. Magnetic field effects on the formation and properties of nickel nanostructures. Eur. J. Inorg. Chem. 2009, 2009, 435–440. [Google Scholar] [CrossRef]
- Hwang, J.H.; Dravid, V.P.; Teng, M.H.; Host, J.J.; Elliott, B.R.; Johnson, D.L.; Mason, T.O. Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 1997, 12, 1076–1082. [Google Scholar] [CrossRef]
- Chie, K.; Fujiwara, M.; Fujiwara, Y.; Tanimoto, Y. Magnetic separation of metal ions. J. Phys. Chem. B 2003, 107, 14374–14377. [Google Scholar] [CrossRef]
- Lin, B.; Wang, R.; Lin, J.; Du, S.; Yu, X.; Wei, K. Preparation of chlorine-free alumina-supported ruthenium catalyst for ammonia synthesis base on RuCl3 by hydrazine reduction. Catal. Commun. 2007, 8, 1838–1842. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Wen, W. Synthesis of Nickel Nanowires with Tunable Characteristics. Nanomaterials 2016, 6, 19. https://doi.org/10.3390/nano6010019
Xia Z, Wen W. Synthesis of Nickel Nanowires with Tunable Characteristics. Nanomaterials. 2016; 6(1):19. https://doi.org/10.3390/nano6010019
Chicago/Turabian StyleXia, Zengzilu, and Weijia Wen. 2016. "Synthesis of Nickel Nanowires with Tunable Characteristics" Nanomaterials 6, no. 1: 19. https://doi.org/10.3390/nano6010019
APA StyleXia, Z., & Wen, W. (2016). Synthesis of Nickel Nanowires with Tunable Characteristics. Nanomaterials, 6(1), 19. https://doi.org/10.3390/nano6010019