Meso-Structuring of SiCN Ceramics by Polystyrene Templates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the PS60 Template and the PS60SiCN Ceramics
2.2. Characterization of the PS60 Template
2.3. Characterization of the PS60SiCN Ceramics
3. Experimental Section
3.1. Materials and Methods
3.2. Preparation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Riedel, R.; Kleebe, H.-J.; Schönfelder, H.; Aldinger, F. A covalent micro/nano-composite resistant to high-temperature oxidation. Nature 1995, 374, 526–528. [Google Scholar] [CrossRef]
- Weibelzahl, W.; Motz, G.; Suttor, D.; Ziegler, G. Corrosion stability and mechanical properties of polysilazane-derived SiCN-ceramics. Key Eng. Mater. 1999, 161–163, 111–114. [Google Scholar] [CrossRef]
- Kroke, E.; Li, Y.-L.; Konetschny, C.; Lecomte, E.; Fasel, C.; Riedel, R. Silazane derived ceramics and related materials. Mater. Sci. Eng. R 2000, 26, 97–199. [Google Scholar] [CrossRef]
- Greil, P. Polymer derived engineering ceramics. Adv. Eng. Mater. 2000, 2, 339–348. [Google Scholar] [CrossRef]
- Kleebe, H.J.; Störmer, H.; Trassl, S.; Ziegler, G. Thermal stability of SiCN ceramics studied by spectroscopy and electron microscopy. Appl. Organomet. Chem. 2001, 15, 858–866. [Google Scholar] [CrossRef]
- Riedel, R.; Mera, G.; Hauser, R.; Klonczynski, A. Silicon-based polymer-derived ceramics: Synthesis properties and applications—A review. J. Ceram. Soc. Jpn. 2006, 114, 425–444. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar]
- Colombo, P.; Sorarú, G.D.; Riedel, R.; Kleebe, A.; Stech, D.E. Polymer Derived Ceramics; Publications Inc.: Lancaster, PA, USA, 2010. [Google Scholar]
- Shi, Y.; Wan, Y.; Zhao, D. Ordered mesoporous non-oxide materials. Chem. Soc. Rev. 2011, 40, 3854–3878. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.; Schmalz, T.; Motz, G.; Kempe, R. Polymer derived non-oxide ceramics modified with late transition metals. Chem. Soc. Rev. 2012, 41, 5102–5116. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, E.; Kleebe, H.J.; Riedel, R. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): Preparative approaches and properties. Chem. Soc. Rev. 2012, 41, 5032–5052. [Google Scholar] [CrossRef] [PubMed]
- Mera, G.; Navrotsky, A.; Sen, S.; Kleebe, H.-J.; Riedel, R. Polymer-derived SiCN and SiOC ceramics—Structure and energetics at the nanoscale. J. Mater. Chem. A 2013, 1, 3826. [Google Scholar] [CrossRef]
- Bernardo, E.; Fiocco, L.; Parcianello, G.; Storti, E.; Colombo, P. Advanced ceramics from preceramic polymers modified at the nano-scale: A review. Materials 2014, 7, 1927–1956. [Google Scholar] [CrossRef]
- Sung, I.K.; Mitchell, C.M.; Kim, D.P.; Kenis, P.J.A. Tailored macroporous SiCN and SiC structures for high-temperature fuel reforming. Adv. Funct. Mater. 2005, 15, 1336–1342. [Google Scholar] [CrossRef]
- Mitchell, C.M.; Kim, D.P.; Kenis, P. Ceramic microreactors for on-site hydrogen production. J. Catal. 2006, 241, 235–242. [Google Scholar] [CrossRef]
- Kamperman, M.; Burns, A.; Weissgraeber, R.; van Vegten, N.; Warren, S.C.; Gruner, S.M.; Baiker, A.; Wiesner, U. Integrating structure control over multiple length scales in porous high temperature ceramics with functional platinum nanoparticles. Nano Lett. 2009, 9, 2756–2762. [Google Scholar] [CrossRef] [PubMed]
- Glatz, G.; Schmalz, T.; Kraus, T.; Haarmann, F.; Motz, G.; Kempe, R. Copper-containing SiCN precursor ceramics (Cu@SiCN) as selective hydrocarbon oxidation catalysts using air as an oxidant. Chem. Eur. J. 2010, 16, 4231–4238. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, T.; Kraus, T.; Günthner, M.; Liebscher, C.; Glatzel, U.; Kempe, R.; Motz, G. Catalytic formation of carbon phases in metal modified, porous polymer derived SiCN ceramics. Carbon 2011, 49, 3065–3072. [Google Scholar] [CrossRef]
- Zaheer, M.; Motz, G.; Kempe, R. The generation of palladium silicide nanoalloy particles in a SiCN matrix and their catalytic applications. J. Mater. Chem. 2011, 21, 18825. [Google Scholar] [CrossRef]
- Zaheer, M.; Keenan, C.D.; Hermannsdörfer, J.; Roessler, E.; Motz, G.; Senker, J.; Kempe, R. Robust microporous monoliths with integrated catalytically active metal sites investigated by hyperpolarized 129Xe NMR. Chem. Mater. 2012, 24, 3952–3963. [Google Scholar] [CrossRef]
- Forberg, D.; Obenauf, J.; Friedrich, M.; Hühne, S.-M.; Mader, W.; Motz, G.; Kempe, R. The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles. Catal. Sci. Technol. 2014, 4, 4188–4192. [Google Scholar] [CrossRef]
- Kamperman, M.; Garcia, C.B.; Du, P.; Ow, H.; Wiesner, U. Ordered mesoporous ceramics stable up to 1500 degrees C from diblock copolymer mesophases. J. Am. Chem. Soc. 2004, 126, 14708–14709. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, Q.D.; Kim, D.J.; Kim, D.P. Synthesis of inorganic–organic diblock copolymers as a precursor of ordered mesoporous SiCN ceramic. Adv. Mater. 2007, 19, 2351–2354. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Hoang, P.H.; Perumal, J.; Kim, D.P. An inorganic-organic diblock copolymer photoresist for direct mesoporous SiCN ceramic patterns via photolithography. Chem. Commun. 2011, 47, 3484–3486. [Google Scholar] [CrossRef]
- Jones, B.H.; Lodge, T.P. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template. J. Am. Chem. Soc. 2009, 131, 1676–1677. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.K.; Kretschmer, W.P.; Denner, C.; Motz, G.; Hund, M.; Fery, A.; Trebbin, M.; Forster, S.; Kempe, R. SiCN nanofibers with a diameter below 100 nm synthesized via concerted block copolymer formation, microphase separation, and crosslinking. Small 2013, 984–989. [Google Scholar] [CrossRef]
- Pillai, S.K.; Kretschmer, W.P.; Trebbin, M.; Forster, S.; Kempe, R. Tailored nanostructuring of end-group-functionalized high-density polyethylene synthesized by an efficient catalytic version of Ziegler’s “Aufbaureaktion”. Chem. Eur. J. 2012, 18, 13974–13978. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Hong, L.Y.; Wang, A.J.; Kim, D.P. Facile synthesis of SiCN ceramic foam via self-sacrificial template method. Solid State Phenom. 2007, 124–126, 727–730. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, A.; Kim, D.-P. 3D macroporous SiCN ceramic patterns tailored by thermally-induced deformation of template. J. Mater. Chem. 2010, 20, 2853–2857. [Google Scholar] [CrossRef]
- Dibandjo, P.; Graczyk-Zajac, M.; Riedel, R.; Pradeep, V.S.; Soraru, G.D. Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. J. Eur. Ceram. Soc. 2012, 32, 2495–2503. [Google Scholar] [CrossRef]
- Song, T.; Xia, J.; Lee, J.-H.; Lee, D.H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S.K.; Chang, H.; Park, W.I.; et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 1984, 57, 603–619. [Google Scholar]
- Kriegsmann, H.; Beyer, H. Spektroskopische untersuchungen an Siliciumverbindungen. XIV. IR- und Ramanspektren einiger substituierter Disilylacetylene. Z. Anorg. Allg. Chem. 1961, 311, 180–185. [Google Scholar] [CrossRef]
- Choong Kwet Yive, N.S.; Corriu, R.J.P.; Leclercq, D.; Mutin, P.H.; Vioux, A. Silicon carbonitride from polymeric precursors: Thermal cross-linking and pyrolysis of oligosilazane model compounds. Chem. Mater. 1992, 4, 141–146. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewert, J.-K.; Denner, C.; Friedrich, M.; Motz, G.; Kempe, R. Meso-Structuring of SiCN Ceramics by Polystyrene Templates. Nanomaterials 2015, 5, 425-435. https://doi.org/10.3390/nano5020425
Ewert J-K, Denner C, Friedrich M, Motz G, Kempe R. Meso-Structuring of SiCN Ceramics by Polystyrene Templates. Nanomaterials. 2015; 5(2):425-435. https://doi.org/10.3390/nano5020425
Chicago/Turabian StyleEwert, Julia-Katharina, Christine Denner, Martin Friedrich, Günter Motz, and Rhett Kempe. 2015. "Meso-Structuring of SiCN Ceramics by Polystyrene Templates" Nanomaterials 5, no. 2: 425-435. https://doi.org/10.3390/nano5020425
APA StyleEwert, J.-K., Denner, C., Friedrich, M., Motz, G., & Kempe, R. (2015). Meso-Structuring of SiCN Ceramics by Polystyrene Templates. Nanomaterials, 5(2), 425-435. https://doi.org/10.3390/nano5020425