Origin and Future of Plasmonic Optical Tweezers
Abstract
:1. Introduction
2. Current Status
3. Future Prospects
3.1. Molecular Manipulation
3.2. Rotation by Plasmonic Optical Force and Torque
3.3. Plasmon-Assisted Optofluidics with POT
3.4. POT with Plasmonic Optical Lattice
3.5. New Nanobiotechnology and Lab-on-a-Chip Applications
3.6. Atomic Physics
3.7. Combination with Other High-Resolution Microscopy
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156–159. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M. Optical levitation by radiation pressure. Appl. Phys. Lett. 1971, 19, 283–285. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Bjorkholm, J.E.; Ashkin, A.; Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 1986, 57, 314. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A.; Dziedzic, J.M. Optical trapping and manipulation of viruses and bacteria. Science 1987, 235, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A.; Dziedzic, J.M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A. History of optical trapping and manipulation of small-neutral particles, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 841–856. [Google Scholar] [CrossRef]
- Grier, D. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Neuman, K.C.; Block, S.M. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809. [Google Scholar] [CrossRef] [PubMed]
- Fazal, F.M.; Block, S.M. Optical tweezers study life under tension. Nat. Photonics 2011, 5, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Wright, W.H.; Sonek, G.J.; Berns, M.W. Radiation trapping forces on microspheres with optical tweezer. Appl. Rev. Lett. 1993, 63, 715–717. [Google Scholar] [CrossRef]
- Juan, M.L.; Righini, M.; Quidant, R. Plasmonic nano-optical tweezers. Nat. Photonics 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Shoji, T.; Tsuboi, Y. Plasmonic optical tweezers toward molecular manipulation: Tailoring plasmonic nanostructure, light source, and resonant trapping. J. Phys. Chem. Lett. 2014, 5, 2957–2967. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principle of Nano Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Stockman, M.J. Nanoplasmonics: The physics behind the applications. Phys. Today 2011, 64. [Google Scholar] [CrossRef]
- Phol, D.W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 1984, 23, 658–660. [Google Scholar]
- Betzig, E.; Trautman, J.K. Near field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992, 257, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Betzig, E.; Chichester, R.J. Single molecules observed by near-field scanning optical microscope. Science 1993, 262, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Novotny, L.; Bian, R.X.; Xie, X.S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 1997, 79, 645–648. [Google Scholar] [CrossRef]
- Martin, O.J.F.; Girard, C. Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Appl. Phys. Lett. 1997, 70, 705–707. [Google Scholar] [CrossRef]
- Okamoto, K.; Kawata, S. Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 1999, 83, 4534–4537. [Google Scholar] [CrossRef]
- Garcés-Chávez, V.; Quidant, R.; Reece, P.J.; Badenes, G.; Torner, L.; Dholakia, K. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef]
- Volpe, G.; Quidant, R.; Badenes, G.; Petrov, D. Surface plasmon radiation force. Phys. Rev. Lett. 2006, 96. [Google Scholar] [CrossRef]
- Righini, M.; Volpe, G.; Girad, C.; Petrov, D.; Quidant, R. Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 2008, 100. [Google Scholar] [CrossRef]
- Righini, M.; Zelenina, A.S.; Girard, C.; Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys. 2008, 3, 477–480. [Google Scholar] [CrossRef]
- Grigorenko, A.N.; Roberts, N.W.; Dickinson, M.R.; Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2008, 2, 365–370. [Google Scholar] [CrossRef]
- Righini, M.; Ghenuche, P.; Cherukulappurath, S.; Myroshnychenko, U.; Garcia de Abajo, F.J.; Quidant, R. Nano-optical trapping of Rayleigh particles and Escherichia bacteria with resonant optical antennas. Nano Lett. 2009, 9, 3387–3391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, L.; Santschi, C.; Martin, O.J.F. Trapping and sensing 10 nm metal nanoparticle using plasmonic dipole antennas. Nano Lett. 2010, 10, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.L.; Gordon, R.; Pang, Y.; Eftekhavi, F.; Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 2009, 5, 915–919. [Google Scholar] [CrossRef]
- Biagioni, P.; Huang, J.-S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J.C.; Wu, X.; Feichtner, T.; Ziegler, J.; Weinmann, P.; et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010, 1. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Maerkl, S.J.; Martin, O.J.F. Integration of plasmonic trapping in a microfluidic environment. Opt. Express 2009, 17, 6018–6024. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Gordon, R. Optical trapping of single protein. Nano Lett. 2012, 12, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Kotnala, A.; Gordon, R. Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. Biomed. Opt. Express 2014, 5, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Al Balushi, A.A.; Gordon, R. Label-free free-solution single-molecule protein−small molecule interaction observed by double-nanohole plasmonic trapping. ACS Photonics 2014, 1, 389–393. [Google Scholar] [CrossRef]
- Al Balushi, A.A.; Gordon, R. A label-free untethered approach to single-molecule protein binding kinetics. Nano Lett. 2014, 14, 5787–5791. [Google Scholar]
- Shoji, T.; Saitoh, J.; Kitamura, N.; Nagasawa, F.; Murakoshi, K.; Yamauchi, H.; Ito, S.; Miyasaka, H.; Ishihara, H.; Tsuboi, Y. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light. J. Am. Chem. Soc. 2013, 135, 6643–6648. [Google Scholar] [CrossRef] [PubMed]
- Toshimitsu, M.; Matsumura, Y.; Shoji, T.; Kitamura, N.; Takase, M.; Murakoshi, K.; Yamauchi, H.; Ito, S.; Miyasaka, H.; Nobuhiro, A.; et al. Metallic-nanostructure-enhanced optical trapping of flexible polymer chains in aqueous solution as revealed by confocal fluorescence microspectroscopy. J. Phys. Chem. C 2012, 116, 14610–14618. [Google Scholar] [CrossRef]
- Beth, R.A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 1936, 50, 115–125. [Google Scholar] [CrossRef]
- Nieminen, T.A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Optical measurement of microscopic torques. J. Mod. Opt. 2001, 48, 405–413. [Google Scholar] [CrossRef]
- Paterson, L.; MacDonald, M.P.; Arlt, J.; Sibbett, W.; Bryant, P.E.; Dholakia, K. Controlled rotation of optically trapped microscopic particles. Science 2001, 292, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Schonbrun, E.; Steinvurzel, P.; Crozier, K.B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.; Huang, J.-S.; Huang, C. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett. 2014, 14, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zentqraf, T.; Liu, Y.; Bartal, G.; Zhang, X. Light driven nanoscale plasmonic motors. Nat. Nanotech. 2010, 5, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Baffou, G.; Quidant, R.; Girad, C. Thermoplasmonics modeling: A green’s function approach. Phys. Rev. B 2010, 82. [Google Scholar] [CrossRef]
- Baffou, G.; Quidant, R.; de Abajo, F.J.G. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 2010, 4, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Baffou, G.; Berto, P.; Urena, E.B.; Quidant, R.; Monneret, S.; Polleux, J.; Righeault, H. Photoinduced heating of nanoparticle arrays. ACS Nano 2013, 8, 6478–6488. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Butterworth-Heinemann: Burlington, VT, USA, 2011. [Google Scholar]
- Donner, J.S.; Baffou, G.; McCloskey, D.; Quidant, R. Plasmon-assisted optofluidics. ACS Nano 2011, 7, 5457–5462. [Google Scholar] [CrossRef] [PubMed]
- Roxworthy, B.J.; Bhuiya, A.M.; Vanka, S.P.; Toussant, K.C., Jr. Understanding and controlling plasmon-induced convection. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Roxworthy, B.J.; Ko, K.D.; Kumar, A.; Fung, K.H.; Chow, E.K.C.; Liu, G.L.; Fang, N.X.; Toussaint, K.C., Jr. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 2012, 12, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Ndukaife, J.C.; Mishra, A.; Guler, U.; Nnanna, A.G.A.; Wereley, S.T.; Boltasseva, A. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. ACS Nano 2014, 8, 9035–9043. [Google Scholar] [CrossRef] [PubMed]
- Korda, P.T.; Taylor, M.B.; Grier, D.G. Kinetically locked-in colloidal transport in an array of optical tweezers. Phys. Rev. Lett. 2002, 89. [Google Scholar] [CrossRef]
- Ladavac, K.; Kasza, K.; Grier, D.G. Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation. Phys. Rev. E 2004, 70. [Google Scholar] [CrossRef]
- MacDonald, G.C.; Spalding, G.C.; Dholakia, K. Microfluidic sorting in an optical lattice. Nature 2003, 426, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Cuche, A.; Mahboub, O.; Devaux, E.; Genet, C.; Ebbesen, T.W. Plasmonic coherent drive of an optical trap. Phys. Rev. Lett. 2008, 108. [Google Scholar] [CrossRef]
- Cuche, A.; Stein, B.; Canguier-Durand, A.; Devaux, E.; Genet, C.; Ebbesen, T.W. Brownian motion in a designer force field: Dynamical effects of negative refraction on nanoparticles. Nano Lett. 2012, 12, 4329–4332. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Lee, A.T.; Hung, C.C.; Huang, J.S.; Yang, Y.T. Transport and trapping in two-dimensional nanoscale plasmonic optical lattice. Nano Lett. 2013, 13, 4118–4122. [Google Scholar] [CrossRef] [PubMed]
- Flint, S.J.; Enquist, W.; Racaniello, V.R.; Skalka, A.M. Principles of Virology, 3rd ed.; ASM Press: Washington, DC, USA, 2009. [Google Scholar]
- Van der Pol, E.; Böing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharm. Rev. 2012, 64, 676–705. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.H.J.; Lerdsuchatawanich, T.; Erickson, D. Forces and transport for a particle in a slot waveguide. Nano Lett. 2009, 9, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Hansch, T.W.; Schawlow, A.L. Cooling of gases by laser radiation. Opt. Commun. 1975, 13, 68–69. [Google Scholar] [CrossRef]
- Stenholm, S. The semiclassical theory of laser cooling. Rev. Mod. Phys. 1986, 58, 699–739. [Google Scholar] [CrossRef]
- Chang, D.E.; Thompson, J.D.; Park, H.; Vuletić, V.; Zibrov, A.S.; Zoller, P.; Lukin, M.D. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 2009, 103. [Google Scholar] [CrossRef]
- Gullans, M.; Tiecke, T.G.; Chang, D.E.; Feist, J.; Thompson, J.D.; Cirac, J.I.; Zoller, P.; Lukin, M.D. Nanoplasmonic lattices for ultracold atoms. Phys. Rev. Lett. 2013, 109. [Google Scholar] [CrossRef]
- Thompson, J.D.; Tiecke, T.G.; de Leon, N.P.; Feist, J.; Akimov, A.V.; Gullans, M.; Zibrov, A.S.; Vuletić, V.; Lukin, M.D. Coupling a single trapped atom to a nanoscale optical cavity. Science 2013, 340, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Piliarik, M.; Sandoghdar, V. Direct optical sensing of single unlabeled proteins and super-resolution imaging of their binding sites. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Huidobro, P.; Ota, S.; Yang, X.; Yin, X.; Garcia-Vidal, F.J.; Zhang, X. Plasmonic Brownian ratchet. Phys. Rev. B 2013, 88. [Google Scholar] [CrossRef]
- Zhang, W.; Martin, J.F.O. A universal law for plasmon resonance shift in biosensing. ACS Photonics 2015, 2, 144–155. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-S.; Yang, Y.-T. Origin and Future of Plasmonic Optical Tweezers. Nanomaterials 2015, 5, 1048-1065. https://doi.org/10.3390/nano5021048
Huang J-S, Yang Y-T. Origin and Future of Plasmonic Optical Tweezers. Nanomaterials. 2015; 5(2):1048-1065. https://doi.org/10.3390/nano5021048
Chicago/Turabian StyleHuang, Jer-Shing, and Ya-Tang Yang. 2015. "Origin and Future of Plasmonic Optical Tweezers" Nanomaterials 5, no. 2: 1048-1065. https://doi.org/10.3390/nano5021048
APA StyleHuang, J.-S., & Yang, Y.-T. (2015). Origin and Future of Plasmonic Optical Tweezers. Nanomaterials, 5(2), 1048-1065. https://doi.org/10.3390/nano5021048