Next Article in Journal / Special Issue
A Strategy for Hydroxide Exclusion in Nanocrystalline Solid-State Metathesis Products
Previous Article in Journal
Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry
Previous Article in Special Issue
Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation
Open AccessArticle

Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

1
Applied Thermodynamics Research Unit, National Engineering School of Gabès, Gabès University, Rue Omar Ibn-Elkhattab, 6029 Gabes, Tunisia
2
Laboratory of Chemistry of Surfaces and Interfaces, DSM/IRAMIS/SPCSI, Atomic Energy Commission of Saclay, 91191 Gif-sur-Yvette, France
3
Department of Molecular Chemistry, Joseph Fourier University, Grenoble Cedex 09, France
4
Laboratory of Molecular Electrochemistry, Paris VII University, 2 Place Jussieu, Paris Cedex 05, France
*
Author to whom correspondence should be addressed.
Nanomaterials 2013, 3(2), 303-316; https://doi.org/10.3390/nano3020303
Received: 4 April 2013 / Revised: 25 April 2013 / Accepted: 8 May 2013 / Published: 17 May 2013
(This article belongs to the Special Issue New Developments in Nanomaterial Analysis)
This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. View Full-Text
Keywords: AFM; SECM; nano-electrochemistry; nano-electrografting; AFM-SECM; surface; interface; nano-functionalization; nano-process AFM; SECM; nano-electrochemistry; nano-electrografting; AFM-SECM; surface; interface; nano-functionalization; nano-process
Show Figures

Graphical abstract

MDPI and ACS Style

Ghorbal, A.; Grisotto, F.; Charlier, J.; Palacin, S.; Goyer, C.; Demaille, C.; Brahim, A.B. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM. Nanomaterials 2013, 3, 303-316.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop