Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell
Abstract
:1. Why Do We Need Renewable Solar Energy?
“Sustainable Development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”Our Common Future, Brundtland Report, 1987.
2. Many Approaches for Harnessing Sun’s Energy
“I have no doubt that we will be successful in harnessing the sun’s energy. If sunbeams were weapons of war, we would have had solar energy centuries ago.”George Porter (1920–2002), Winner of 1967 Nobel Prize in Chemistry.
2.1. Silicon Based Solar Cells
2.2. Dye Sensitized Solar Cells
2.3. Organic Solar Cells
3. Breaking the Shockley-Queisser Limit
3.1. Cadmium Quantum Dots Based Solar Cells
3.2. Lead Quantum Dots Based Solar Cells
3.3. Some Other Quantum Dot Based Solar Cells
3.4. Carbon Dot Based Solar Cells
4. Redox Couple and Counter Electrode
5. Photoinduced Electron Transfer
6. Future Outlook
“I’d put my money on the sun and solar energy. What a source of power!!! I hope we don’t have to wait till oil and coal run out before we tackle that…”Thomas Edison (1847–1931)
Solar cells | Materials | Efficiency | References |
---|---|---|---|
Silicon | Si wafer | 15.70% | [8] |
22.40% | [9] | ||
Dye Sensitized | Ru bipyridine | 11.18% | [18] |
Zn porphyrin | 12.30% | [20] | |
Solid-State DSC | Z907 dye with spiro-OMeTAD (doctor-blading) | 3.00% | [98] |
Z907 dye with spiro-OMeTAD | 5.65% | [97] | |
Y123 dye with spiro-OMeTAD and p-type Co(III) dopant | 7.20% | [99] | |
Polymer | P3HT, IC60BA, PBDTT-DPP, PC71BM | 8.60% | [27] |
Same as above a | 10.60% | [28] | |
Quantum Dots (Liquid Eletrolytes) | Rod like CdSe | 2.70% | [51] |
CdSexS(1−x)/CdSe | 3.17% | [47] | |
CdS/CdSe | 3.50% | [48] | |
CdS/CdSe | 3.68% | [49] | |
CdS/CdSe | 4.10% | [50] | |
CdS/CdSe | 5.42% | [52] | |
CdS/CdSe Invert Type I | 5.32% | [53] | |
CdSe | 5.42% | [59] | |
PbS/PbSe | 2.10% | [65] | |
Mixed PbSxSe1−x | 3.30% | [66] | |
PbS (Tandem) | 4.20% | [69] | |
PbSe | 4.70% | [67] | |
PbS (TiO2 nanosheets) | 4.73% | [68] | |
PbS | 5.10% | [39] | |
PbS | 6.00% | [70] | |
PbS | 6.60% | [71] | |
Solid State QDSSCs | CdSe with quaterthiophene | 0.34% | [103] |
CdS/Squarine (Hybride) | 1.20% | [100] | |
PbS (Non-hybride) | 1.47% | [100] | |
CdS/CdSe with Polymer Matrix | 4.00% | [101] | |
CdS/CdSe/ZnO | 4.50% | [102] |
Acknowledgements
References
- The Nobel Peace Prize 2007. Available online: http://www.nobelprize.org/nobel_prizes/peace/laureates/2007/ (accessed on 8 September 2012).
- IPCC Press Conference. Available online: http://www.ipcc.ch/pdf/presentations/nobel-peace-prize-2007-12/wg1_presentation_john_houghton.pdf (accessed on 8 September 2012).
- WMO Statement on the Status of the Global Climate in 2011. Available online: http://www.wmo.int/pages/publications/showcase/documents/WMO_1085_en.pdf (accessed on 8 September 2012).
- International Energy Outlook 2011. Available online: http://www.eia.gov/forecasts/ieo/world.cfm (accessed on 8 September 2012).
- Fuyuno, I. Quake shakes Japan’s science. Nature 2011, 471, 420. [Google Scholar] [CrossRef]
- Hammarstrom, L.; Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 2009, 42, 1859–1860. [Google Scholar] [CrossRef]
- Service, R.F. Solar energy-Can the upstarts top silicon? Science 2008, 319, 718–720. [Google Scholar] [CrossRef]
- SunTech. Available online: http://am.suntech-power.com/en/technology.html (accessed on 8 September 2012).
- SunPower. Available online: http://us.sunpowercorp.com/about/the-worlds-standard-for-solar/most-efficient-solar/ (accessed on 8 September 2012).
- Horiuchi, N.; Wenham, S. Towards highly efficient solar cells. Nat. Photon. 2012, 6, 136–137. [Google Scholar] [CrossRef]
- Mehta, S.; Bradford, T. PV Technology, Production, and Cost, 2009 Forecast: The Anatomy of a Shakeout; Prometheus Institute and Greentech Media: San Francisco, CA, USA, 2009. [Google Scholar]
- Oregan, B.; Grätzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobio. C 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Grätzel, M. Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 2009, 42, 1788–1798. [Google Scholar] [CrossRef]
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-sensitized solar cells. Nat. Photon. 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851. [Google Scholar] [CrossRef]
- Peter, L.M. The Grätzel cell: Where next? J. Phys. Chem. Lett. 2011, 2, 1861–1867. [Google Scholar] [CrossRef] [Green Version]
- Yella, A.; Lee, H.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.; Yeh, C.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with Cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
- Braun, D.; Heeger, A.J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 1991, 58, 1982–1984. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G.E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 2001, 79, 2996–2998. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.; Herwig, P.; et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688. [Google Scholar] [CrossRef]
- Gilot, J.; Wienk, M.M.; Janssen, R.A.J. Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 2007, 90, 143512. [Google Scholar]
- Kim, J.Y.; Lee, K.; Nelson, E.; Coates, N.E.; Moses, D.; Ngygen, T.-Q.; Dante, M.; Heeger, A.J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225. [Google Scholar] [CrossRef]
- Sista, S.; Park, M.H.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W.L.; Li, G.; Yang, Y. Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 2010, 22, 380–383. [Google Scholar] [CrossRef]
- Dou, L.; You, J.; Yang, J.; Chen, C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photon. 2012, 6, 180–185. [Google Scholar] [CrossRef]
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photon. 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Peters, C.H.; Sachs-Quintana, I.T.; Kastrop, J.P.; Beaupre, S.; Leclerc, M.; McGehee, M.D. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 2011, 1, 491–494. [Google Scholar] [CrossRef]
- Shockley, W.; Hans, J.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Brown, G.F.; Wu, J. Third generation photovoltaics. Laser Photon. Rev. 2009, 3, 394–405. [Google Scholar] [CrossRef]
- Solar Cell Central. Available online: http://solarcellcentral.com/limits_page.html (accessed on 8 September 2012).
- Norzik, A. Next Generation Photovoltaics Based on Multiple Exciton Generation in Quantum Dot Solar Cells. In Next Generation of Photovoltaics: New Concepts; López, A.B.C., Vega, A.M., Luque López, A.L., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2012; pp. 191–207. [Google Scholar]
- Sambur, J.B.; Novet, T.; Parkinson, B.A. Multiple exciton collection in a sensitized photovoltaic system. Science 2010, 330, 63–66. [Google Scholar] [CrossRef]
- Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum qot solar cell. Science 2011, 334, 1530–1533. [Google Scholar] [CrossRef]
- Sargent, E.H. colloidal quantum dot solar cells. Nat. Photon. 2012, 6, 133–135. [Google Scholar] [CrossRef]
- Emin, S.; Singh, S.P.; Han, L.; Satoh, N.; Islam, A. Colloidal quantum dot solar cells. Solar Energy 2011, 85, 1264–1282. [Google Scholar] [CrossRef]
- Bang, J.H.; Kamat, P.V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476. [Google Scholar] [CrossRef]
- Pattantyus-Abraham, A.G.; Kramer, I.J.; Barkhouse, A.R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M.K.; Grätzel, M.; et al. Depleted-heterojunction colloidal quantum dot solar cells. Acs Nano 2010, 4, 3374–3380. [Google Scholar] [CrossRef]
- Luther, J.M.; Gao, J.; Lloyd, M.T.; Semonin, O.E.; Beard, M.C.; Nozik, A.J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707. [Google Scholar] [CrossRef]
- Hetsch, F.; Xu, X.; Wang, H.; Kershaw, S.V.; Rogach, A.L. Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: Material, charge transfer, and separation aspects of some device topologies. J. Phys. Chem. Lett. 2011, 2, 1879–1887. [Google Scholar] [CrossRef]
- Gur, I.; Fromer, N.A.; Geier, M.L.; Alivisatos, A.P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465. [Google Scholar] [CrossRef]
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393. [Google Scholar] [CrossRef]
- Lee, H.J.; Yum, J.; Leventis, H.C.; Zakeeruddin, S.M.; Haque, S.A.; Chen, P.; Seok, S.I.; Grätzel, M.; Nazeeruddin, M.K. CdSe Quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C 2008, 112, 11600–11608. [Google Scholar]
- Farrow, B.; Kamat, P.V. CdSe Quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 2009, 131, 11124–11131. [Google Scholar] [CrossRef]
- Landi, B.J.; Castro, S.L.; Ruf, H.J.; Evans, C.M.; Bailey, S.G.; Raffaelle, R.P. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater. Solar Cells 2005, 87, 733–746. [Google Scholar] [CrossRef]
- Shu, T.; Zhou, Z.; Wang, H.; Liu, G.; Xiang, P.; Rong, Y.; Han, H.; Zhao, Y. Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1−x) quantum dots. J. Mater. Chem. 2012, 22, 10525–10529. [Google Scholar] [CrossRef]
- Toyoda, T.; Oshikane, K.; Li, D.; Luo, Y.; Meng, Q.; Shen, Q. Photoacoustic and photoelectrochemical current spectra of combined Cds/Cdse quantum dots adsorbed on nanostructured TiO2 electrodes, together with photovoltaic characteristics. J. Appl. Phys. 2010, 108, 114304. [Google Scholar] [CrossRef]
- Hossain, M.A.; Jennings, J.R.; Koh, Z.Y.; Wang, Q. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano 2011, 5, 3172–3181. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, C.; Liu, C.; Li, C.; Chang, H. Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Adv. Energy Mater. 2011, 1, 259–264. [Google Scholar] [CrossRef]
- Salant, A.; Shalom, M.; Tachan, Z.; Buhbut, S.; Zaban, A.; Banin, U. Quantum rod-sensitized solar cell: Nanocrystal shape effect on the photovoltaic properties. Nano Lett. 2012, 12, 2095–2100. [Google Scholar] [CrossRef]
- Santra, P.K.; Kamat, P.V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, J.; Zhong, X. highly efficient inverted type-I CdS/CdSe core/shell structure qd-sensitized solar cells. ACS Nano 2012, 6, 3982–3991. [Google Scholar] [CrossRef]
- Lee, H.J.; Bang, J.; Park, J.; Kim, S.; Park, S. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: All prepared by successive ionic layer adsorption and reaction processes. Chem. Mater. 2010, 22, 5636–5643. [Google Scholar] [CrossRef]
- Lee, Y.; Lo, Y. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 2009, 19, 604–609. [Google Scholar] [CrossRef]
- Yu, X.; Liao, J.; Qiu, K.; Kuang, D.; Su, C. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. ACS Nano 2011, 5, 9494–9500. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 2011, 13, 4659–4667. [Google Scholar]
- Zhu, G.; Pan, L.; Xu, T.; Sun, Z. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl. Mater. Interfaces 2011, 3, 3146–3151. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, K.; Hou, Y.M.; Fang, Z.; Pan, Z.X.; Wu, W.J.; Hua, J.L.; Zhong, X.H. Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 2012, 48, 11235–11237. [Google Scholar]
- Wise, F. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780. [Google Scholar] [CrossRef]
- Evans, C.M.; Guo, L.; Peterson, J. J.; Maccagnano-Zacher, S.; Krauss, T.D. Ultrabright PbSe magic-sized clusters. Nano Lett. 2008, 8, 2896–2899. [Google Scholar] [CrossRef]
- Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S.G.; Eychmueller, A.; Grätzel, M. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano 2012, 6, 3092–3099. [Google Scholar] [CrossRef]
- Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M.; Bach, U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 2002, 106, 7578–7580. [Google Scholar] [CrossRef]
- Luther, J. M.; Law, M.; Beard, M.C.; Song, Q.; Reese, M.O.; Ellingson, R.J.; Nozik, A.J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492. [Google Scholar] [CrossRef]
- Benehkohal, N.P.; Gonzalez-Pedro, V.; Boix, P.P.; Chavhan, S.; Tena-Zaera, R.; Demopoulos, G.P.; Mora-Sero, I. Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J. Phys. Chem. C 2012, 116, 16391–16397. [Google Scholar]
- Ma, W.; Luther, J.M.; Zheng, H.; Wu, Y.; Alivisatos, A.P. Photovoltaic devices employing ternary PbS(x)Se(1−x) nanocrystals. Nano Lett. 2009, 9, 1699–1703. [Google Scholar] [CrossRef]
- Ma, W.; Swisher, S.L.; Ewers, T.; Engel, J.; Ferry, V.E.; Atwater, H.A.; Alivisatos, A.P. Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 2011, 5, 8140–8147. [Google Scholar] [CrossRef]
- Etgar, L.; Zhang, W.; Gabriel, S.; Hickey, S.G.; Nazeeruddin, M.K.; Eychmueller, A.; Liu, B.; Grätzel, M. High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets. Adv. Mater. 2012, 24, 2202–2206. [Google Scholar] [CrossRef]
- Wang, X.; Koleilat, G.I.; Tang, J.; Liu, H.; Kramer, I.J.; Debnath, R.; Brzozowski, L.; Barkhouse, D.A.R.; Levina, L.; Hoogland, S.; et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photon. 2011, 5, 480–484. [Google Scholar] [CrossRef]
- Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771. [Google Scholar] [CrossRef]
- Ning, Z.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X.; Zhitomirsky, D.; Sargent, E.W. All-inorganic colloidal quantum dots photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295–6299. [Google Scholar] [CrossRef]
- Yang, Z.; Chang, H. CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%. Solar Energy Mater. Solar Cells 2010, 94, 2046–2051. [Google Scholar] [CrossRef]
- Chen, H.; Lai, C.; Wu, I.; Pan, H.; Chen, I.P.; Peng, Y.; Liu, C.; Chen, C.; Chou, P. Enhanced performance and air stability of 3.2% hybrid solar cells: how the functional polymer and CdTe nanostructure boost the solar cell efficiency. Adv. Mater. 2011, 23, 5451–5455. [Google Scholar]
- Sun, S.; Liu, H.; Gao, Y.; Qin, D.; Chen, J. Controlled synthesis of CdTe nanocrystals for high performanced Schottky thin film solar cells. J. Mater. Chem. 2012, 22, 19207–19212. [Google Scholar] [CrossRef]
- Jasieniak, J.; MacDonald, B. I.; Watkins, S.E.; Mulvaney, P. Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett. 2011, 11, 2856–2864. [Google Scholar] [CrossRef]
- Yue, W.; Han, S.; Peng, R.; Shen, W.; Geng, H.; Wu, F.; Tao, S.; Wang, M. CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J. Mater. Chem. 2010, 20, 7570–7578. [Google Scholar] [CrossRef]
- Chang, J.; Su, L.; Li, C.; Chang, C.; Lin, J. Efficient “green” quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture. Chem. Commun. 2012, 48, 4848–4850. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Huang, X.; Li, D.; Luo, Y.; Meng, Q. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J. Mater. Chem. 2011, 21, 15903–15905. [Google Scholar] [CrossRef]
- Yu, P.; Zhu, K.; Norman, A.G.; Ferrere, S.; Frank, A.J.; Nozik, A.J. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 2006, 110, 25451–25454. [Google Scholar] [CrossRef]
- Tanabe, K.; Guimard, D.; Bordel, D.; Arakawa, Y. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2012, 100, 193905. [Google Scholar] [CrossRef]
- Tanabe, K.; Watanabe, K.; Arakawa, Y. Flexible thin-film InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 2012, 100, 192102. [Google Scholar] [CrossRef]
- Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563–5565. [Google Scholar] [CrossRef]
- Yan, X.; Cui, X.; Li, B.; Li, L. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 2010, 10, 1869–1873. [Google Scholar] [CrossRef]
- Gabor, N.M.; Zhong, Z.; Bosnick, K.; Park, J.; McEuen, P.L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 2009, 325, 1367–1371. [Google Scholar] [CrossRef]
- Mirtchev, P.; Henderson, E.J.; Soheilnia, N.; Yip, C.M.; Ozin, G.A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 2012, 22, 1265–1269. [Google Scholar] [CrossRef]
- Wang, M.; Chamberland, N.; Breau, L.; Moser, J.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S.M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chem. 2010, 2, 385–389. [Google Scholar] [CrossRef]
- Burschka, J.; Brault, V.; Ahmad, S.; Breau, L.; Nazeeruddin, M.K.; Marsan, B.; Zakeeruddin, S.M.; Grätzel, M. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ. Sci. 2012, 5, 6089–6097. [Google Scholar] [CrossRef]
- Cameron, P.J.; Peter, L.M.; Zakeeruddin, S.M.; Gratzel, M. Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coord. Chem. Rev. 2004, 248, 1447–1453. [Google Scholar] [CrossRef]
- Lim, C.; Im, S.H.; Rhee, J.H.; Lee, Y.H.; Kim, H.; Maiti, N.; Kang, Y.; Chang, J.A.; Nazeeruddin, M.K.; Grätzel, M.; et al. Hole-conducting mediator for stable Sb2S3-sensitized photoelectrochemical solar cells. J. Mater. Chem. 2012, 22, 1107–1111. [Google Scholar]
- Ning, Z.; Yuan, C.; Tian, H.; Fu, Y.; Li, L.; Sun, L.; Agren, H. Type-II Colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. J. Mater. Chem. 2012, 22, 6032–6037. [Google Scholar] [CrossRef]
- Jovanovski, V.; Gonzalez-Pedro, V.; Gimenez, S.; Azaceta, E.; Cabanero, G.; Grande, H.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J. A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 20156–20159. [Google Scholar]
- Yum, J.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J.; Yi, C.; et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 2012, 3, 631. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y. Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Mater. Solar Cells 2006, 90, 549–573. [Google Scholar] [CrossRef]
- Yum, J.; Chen, P.; Grätzel, M.; Nazeeruddin, M.K. Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 2008, 1, 699–707. [Google Scholar] [CrossRef]
- Bach, U.; Lupo, D.; Comte, P.; Moser, J.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583–585. [Google Scholar] [CrossRef]
- Leijtens, T.; Ding, I.; Giovenzana, T.; Bloking, J.T.; McGehee, M.D.; Sellinger, A. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 2012, 6, 1455–1462. [Google Scholar] [CrossRef]
- Xu, C.; Wu, J.; Desai, U.V.; Gao, D. High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett. 2012, 12, 2420–2424. [Google Scholar] [CrossRef]
- Ding, I.; Melas-Kyriazi, J.; Cevey-Ha, N.; Chittibabu, K.G.; Zakeeruddin, S.M.; Grätzel, M.; McGehee, M.D. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading. Organ. Electron. 2010, 11, 1217–1222. [Google Scholar] [CrossRef]
- Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.; Yi, C.; Nazeeruddin, M.K.; Grätzel, M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 18042–18045. [Google Scholar]
- Lee, H.; Leventis, H.C.; Moon, S.; Chen, P.; Ito, S.; Haque, S.A.; Torres, T.; Nueesch, F.; Geiger, T.; Zakeeruddin, S.M.; et al. PbS and CdS quantum dot-sensitized solid-state solar cells: “Old concepts, new results”. Adv. Funct. Mater. 2009, 19, 2735–2742. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Q.; Qin, D.; Luo, Y.; Li, D.; Shen, Q.; Toyoda, T.; Meng, Q. Highly efficient quasi-solid-state quantum-dot-sensitized solar cell based on hydrogel electrolytes. Electrochem. Commun. 2010, 12, 1776–1779. [Google Scholar] [CrossRef]
- Karageorgopoulos, D.; Stathatos, E.; Vitoratos, E. Thin ZnO nanocrystalline films for efficient quasi-solid state electrolyte quantum dot sensitized solar cells. J. Power Sources 2012, 219, 9–15. [Google Scholar] [CrossRef]
- Barcelo, I.; Campina, J.M.; Lana-Villarreal, T.; Gomez, R. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material. Phys. Chem. Chem. Phys. 2012, 14, 5801–5807. [Google Scholar]
- Wang, M.; Anghel, A.M.; Marsan, B.; Ha, N.C.; Pootrakulchote, N.; Zakeeruddin, S.M.; Grätzel, M. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 15976–15997. [Google Scholar]
- Ahmad, S.; Yum, J.; Butt, H.; Nazeeruddin, M.K.; Grätzel, M. Efficient platinum-free counter electrodes for dye-sensitized solar cell applications. ChemPhysChem 2010, 11, 2814–2819. [Google Scholar] [CrossRef]
- Guijarro, N.; Shen, Q.; Gimenez, S.; Mora-Sero, I.; Bisquert, J.; Lana-Villarreal, T.; Toyoda, T.; Gomez, R. Direct correlation between ultrafast injection and photoanode performance in quantum dot sensitized solar cells. J. Phys. Chem. C 2010, 114, 22352–22360. [Google Scholar]
- Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. 1. J. Chem. Phys. 1956, 24, 966–978. [Google Scholar] [CrossRef]
- Sakata, T.; Hashimoto, K.; Hiramoto, M. New aspects of electron-transfer on semiconductor surface-dye-sensitization system. J. Phys. Chem. 1990, 94, 3040–3045. [Google Scholar] [CrossRef]
- Tvrdy, K.; Frantsuzov, P.A.; Kamat, P.V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. USA 2011, 108, 29–34. [Google Scholar]
- Chen, H.; Ratner, M.A.; Schatz, G.C. Time-dependent theory of the rate of photo-induced electron transfer. J. Phys. Chem. C 2011, 115, 18810–18821. [Google Scholar] [CrossRef]
- Chen, H.; Ratner, M.A.; Schatz, G.C. Theoretical calculation of the photo-induced electron transfer rate between a gold atom and a gold cation solvated in CCl4. J. Photochem. Photobio. A 2011, 221, 143–147. [Google Scholar] [CrossRef]
- Zidek, K.; Zheng, K.; Ponseca, C.S., Jr.; Messing, M.E.; Wallenberg, L.R.; Chabera, P.; Abdellah, M.; Sundstrom, V.; Pullerits, T. Electron transfer in quantum-dot-sensitized ZnO nanowires: Ultrafast time-resolved absorption and terahertz study. J. Am. Chem. Soc. 2012, 134, 12110–12117. [Google Scholar]
- Green, M.A. Thin-film solar cells: Review of materials, technologies and commercial status. J. Mate. Sci.-Mater. Electron. 2007, 18, S15–S19. [Google Scholar] [CrossRef]
- King, R.R.; Law, D.C.; Edmondson, K.M.; Fetzer, C.M.; Kinsey, G.S.; Yoon, H.; Sherif, R.A.; Karam, N.H. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 2007, 90, 183516. [Google Scholar]
- Beard, M.C.; Luther, J.M.; Semonin, O.E.; Nozik, A.J. Third generation photovoltaics based on multiple exciton generation in confined semiconductors. Acc. Chem. Res. 2012. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Halim, M.A. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials 2013, 3, 22-47. https://doi.org/10.3390/nano3010022
Halim MA. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials. 2013; 3(1):22-47. https://doi.org/10.3390/nano3010022
Chicago/Turabian StyleHalim, Mohammad A. 2013. "Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell" Nanomaterials 3, no. 1: 22-47. https://doi.org/10.3390/nano3010022
APA StyleHalim, M. A. (2013). Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials, 3(1), 22-47. https://doi.org/10.3390/nano3010022