Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds
Abstract
:1. Introduction

2. Structure of HH Compounds and Typical Strategies of Enhancing ZT for HH
, and is shown in Figure 2. In the structure shown in Figure 2, it consists of three filled interpenetrating face-centered cubic (fcc) sublattices and one vacant fcc sublattice. One should note that the full Huesler material would contain all four interpenetrating sublattices and would be of the form, AB2C. In the HH compounds, the elements A and C form a rock salt structure and B is located at one of the two body diagonal positions (1/4, 1/4, 1/4) in the cell with leaving the other one (3/4, 3/4, 3/4) unoccupied. The more detail introduction of HH structure can be found in review by Graf et al. [82].

), provides new avenues for phonon scattering in addition to the mass fluctuation alloying (
), grain boundary or surface scattering (
), phonon-phonon interactions (
), and strain fields (
), which all can occur in parallel and thus each adds to the process according to the Matthiessen’s rule, given below in Equation 2, with the shortest scattering process dominating.
3. Nanostructuring Enhances ZT of HH Nanocomposites

3.1. Micro-Scale HH Matrix with Nanoinclusions
3.1.1. Ex-Situ Approach-Mechanical Mixing





3.1.2. In-Situ Approach-Nanoscale Precipitation



. Reproduced with permission from Reference [120]. Copyright 2012, American Institute of Physics.
. Reproduced with permission from Reference [120]. Copyright 2012, American Institute of Physics.


3.2. Nanoscale HH Matrix with Nanoinclusions





4. The Future and Challenge of Nanostructuring in HH Compounds

, where na is the number density of atoms,
the reduced Planck constant, vi the sound velocity for each polarization modes. The κmin of ZrNiSn, calculated by Zhu et al. [138], is shown in Figure 22, and thermal conductivity of ZrNiSn based nanocomposites are included for comparison. From this plot (Figure 22) it is apparent that there is still some opportunity of further significant reduction of κL between the κmin of ZrNiSn and the lowest κL of ZrNiSn based nanocomposites in the higher temperature range. Immediately, one might propose that nanostructures with even smaller sizes could further reduce the lattice thermal conductivity for a ZrNiSn based nanocomposite. However, the estimated phonon mean free path of HH-x nanocomposite is on the order of ~1 nm at high temperature [unpublished], which is comparable to the lattice parameter of the HH compound, so this approach is not likely to be effective. And, we should keep in mind that if the size of the HH matrix decreases to ~1 nm the effect of the small grains will also significantly decrease the carrier mobility through enhanced electron scattering [136]. Therefore, just blindly pursuing even smaller nanostructure is not likely to lead to the desired effect of enhancing the ZT but would most likely lead to a decrease in the ZT.
5. Conclusions and Outlook
Acknowledgements
References
- Slack, G.A. New Materials and Performance Limits for Thermoelectric Cooling; D. M. Rowe: Boca Raton, FL, USA, 1995; p. 701. [Google Scholar]
- Tritt, T.M. Overview of Various Strategies and Promising New Bulk Materials for Potential Thermoelectric Applications. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 3–14. [Google Scholar]
- Gordiakova, G.N.; Sinani, S.S. The thermoelectric properties of bismuth telluride with alloying additives. Sov. Phys. Tech. Phys. 1958, 3, 908–911. [Google Scholar]
- Wright, D.A. Thermoelectric properties of bismuth telluride and its alloys. Nature 1958, 181, 834–834. [Google Scholar] [CrossRef]
- Goldsmid, H.J. The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. 1958, 71, 633–646. [Google Scholar] [CrossRef]
- Steele, M.C.; Rosi, F.D. Thermal conductivity and thermoelectric power of germanium-silicon alloys. J. Appl. Phys. 1958, 29, 1517–1520. [Google Scholar] [CrossRef]
- Abrikoso, N.K.; Zemskov, V.S.; Iordanis, E.K.; Petrov, A.V.; Rozhdest, V.V. Thermoelectric properties of silicon-germanium-boron alloys. Sov. Phys. Semicond. 1969, 2, 1468. [Google Scholar]
- Rowe, D.M.; Bunce, R.W. Thermoelectric properties of heavily doped hot-pressed germanium-silicon alloys. J. Phys. D 1969, 2, 1497. [Google Scholar]
- Wyrick, R.; Levinstein, H. Thermoelectric voltage in lead telluride. Phys. Rev. 1950, 78, 304–305. [Google Scholar]
- Putley, E.H. Thermoelectric and galvanomagnetic effects in lead selenide and telluride. Proc. Phys. Soc. 1955, 68, 35–42. [Google Scholar]
- Kolomoets, N.V.; Stavitskaia, T.S.; Stilbans, L.S. An investigation of the thermoelectric properties of lead selenide and lead telluride. Sov. Phys. Tech. Phys. 1957, 2, 59–66. [Google Scholar]
- Gershtein, E.Z.; Stavitskaia, T.S.; Stilbans, L.S. A study of the thermoelectric properties of lead telluride. Sov. Phys. Tech. Phys. 1957, 2, 2302–2313. [Google Scholar]
- Wu, C. Analysis of waste-heat thermoelectric power generators. Appl. Therm. Eng. 1996, 16, 63–69. [Google Scholar]
- Rowe, D.M.; Min, G. Evaluation of thermoelectric modules for power generation. J. Power Sources 1998, 73, 193–198. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics, an environmentally-friendly source of electrical power. Renew. Energ. 1999, 16, 1251–1256. [Google Scholar] [CrossRef]
- Crane, D.T.; Jackson, G.S. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery. Energ. Convers. Manag. 2004, 45, 1565–1582. [Google Scholar] [CrossRef]
- Yang, J.H.; Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006, 31, 224–229. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Kyratsi, T. Thermoelectric Materials and Applications on the Recovery of Waste Heat Energy. In Proceedings of 7th International Conference of the Balkan Physical Union Vols 1 and 2, New York, NY, USA, 2009; Angelopoulos, A., Fildisis, T., Eds.; pp. 700–705.
- Niu, X.; Yu, J.; Wang, S. Experimental study on low-temperature waste heat thermoelectric generator. J. Power Sources 2009, 188, 621–626. [Google Scholar]
- Kyratsi, T. Thermoelectric materials and applications on the recovery of waste heat energy. AIP Conf. Proc. 2010, 1203, 700–705. [Google Scholar] [CrossRef]
- Telkes, M. Solar thermoelectric generators. J. Appl. Phys. 1954, 25, 765–777. [Google Scholar]
- Goldsmid, H.J.; Giutronich, J.E.; Kaila, M.M. Solar thermoelectric generation using bismuth telluride alloys. Sol. Energy 1980, 24, 435–440. [Google Scholar] [CrossRef]
- Omer, S.A.; Infield, D.G. Design optimization of thermoelectric devices for solar power generation. Sol. Energ. Mat. Sol. C. 1998, 53, 67–82. [Google Scholar] [CrossRef]
- Scherrer, H.; Vikhor, L.; Lenoir, B.; Dauscher, A.; Poinas, P. Solar thermolectric generator based on skutterudites. J. Power Sources 2003, 115, 141–148. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Tang, X.F.; Zhai, P.C.; Niino, M.; Endo, C. Recent development in nano and graded thermoelectric materials. Mater. Sci. Forum 2005, 492–493, 135–140. [Google Scholar] [CrossRef]
- Khattab, N.M.; El Shenawy, E.T. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energ. Convers. Manag. 2006, 47, 407–426. [Google Scholar]
- Tritt, T.M.; Boettner, H.; Chen, L. Thermoelectrics: Direct solar thermal energy conversion. MRS Bull. 2008, 33, 366–368. [Google Scholar]
- Baxter, J.; Bian, Z.; Chen, G.; Danielson, D.; Dresselhaus, M.S.; Fedorov, A.G.; Fisher, T.S.; Jones, C.W.; Maginn, E.; Kortshagen, U. Nanoscale design to enable the revolution in renewable energy. Energ. Environ. Sci. 2009, 2, 559–588. [Google Scholar] [CrossRef]
- Jovanovic, V.; Ghamaty, S.; Krommenhoek, D.; Bass, J.C. High Coefficient of Performance Quantum Well Thermoelectric Nano Cooler. In Proceedings of the ASME InterPACK Conference, New York, NY, USA, 2007; pp. 595–601.
- Tritt, T.M. Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Grosse, K.L.; Bae, M.-H.; Lian, F.; Pop, E.; King, W.P. Nanoscale joule heating, peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 2011, 6, 287–290. [Google Scholar] [CrossRef]
- Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235–238. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Alboni, P.N.; Xia, Y.; Tritt, T.M.; Poon, S.J. Thermoelectric Properties of Sb-Doping in the TiNiSn1−xSbx Half-Heusler System. In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 336–339.
- Cook, B.A.; Meisner, G.P.; Yang, J.; Uher, C. High Temperature Thermoelectric Properties of MNiSn (M = Zr,Hf). In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 64–67.
- Uher, C.; Yang, J.; Hu, S.; Morelli, D.T.; Meisner, G.P. Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys. Rev. B 1999, 59, 8615–8621. [Google Scholar] [CrossRef]
- Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A. TiNiSn: A Gateway to the (1,1,1) Intermetallic Compounds. In Proceedings of Fifteenth International Conference on Thermoelectrics, Pasadena, CA, USA, 1996; pp. 122–127.
- Qiu, P.; Yang, J.; Huang, X.; Chen, X.; Chen, L. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Appl. Phys. Lett. 2010, 96, 152105. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, J.; Zhao, B.; Yu, C.; Zhu, T.; Zhao, X. Suspension melting preparation of Zr1−xTixNiSn0.975Sb0.025 half-Heusler alloy and its thermoelectric properties. Rare Metal Mat. Eng. 2009, 38, 1831–1834. [Google Scholar]
- Kimura, Y.; Ueno, H.; Kenjo, T.; Asami, C.; Mishima, Y. Phase Stability and Thermoelectric Properties of Half-Heusler (Ma, Mb)NiSn (Ma, Mb = Hf, Zr, Ti). In Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications; Palm, M., Bewlay, B.P., He, Y.H., Takeyama, M., Wiezorek, J.M.K., Eds.; Cambridge University Press: New York, NY, USA, 2009; Volume 1128, pp. 15–20. [Google Scholar]
- Romaka, V.A.; Fruchart, D.; Romaka, V.V.; Hlil, E.K.; Stadnyk, Y.V.; Gorelenko, Y.K.; Akselrud, L.G. Features of the structural, electrokinetic, and magnetic properties of the heavily doped ZrNiSn semiconductor: Dy acceptor impurity. Semiconductors 2009, 43, 7–13. [Google Scholar] [CrossRef]
- Katsuyama, S.; Matsuo, R.; Ito, M. Thermoelectric properties of half-Heusler alloys Zr1−xYxNiSn1−ySby. J. Alloy. Compd. 2007, 428, 262–267. [Google Scholar] [CrossRef]
- Muta, H.; Kanemitsu, T.; Kurosaki, K.; Yamanaka, S. Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds. Mater. Trans. 2006, 47, 1453–1457. [Google Scholar] [CrossRef]
- Muta, H.; Yamaguchi, T.; Kurosaki, K.; Yamanaka, S. Thermoelectric properties of ZrNiSn based half Heusler compounds. IEEE 2005, 339–342. [Google Scholar]
- Katsuyama, S.; Matsushima, H.; Ito, M. Effect of substitution for Ni by Co and/or Cu on the thermoelectric properties of half-Heusler ZrNiSn. J. Alloy. Compd. 2004, 385, 232–237. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, L.M.; Chen, L.D.; Goto, T.; Hirai, T. Synthesis and Sintering of ZrNiSn Thermoelectric Compounds. In Proceedings of 21st International Conference on Thermoelectrics, California, CA, USA, 2002; pp. 166–169.
- Shen, Q.; Chen, L.; Goto, T.; Hirai, T.; Yang, J.; Meisner, G.P.; Uher, C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 2001, 79, 4165–4167. [Google Scholar]
- Zhu, T.J.; Xiao, K.; Yu, C.; Shen, J.J.; Yang, S.H.; Zhou, A.J.; Zhao, X.B.; He, J. Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-Heusler alloys. J. Appl. Phys. 2010, 108, 044903. [Google Scholar] [CrossRef]
- Qiu, P.; Huang, X.; Chen, X.; Chen, L. Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. J. Appl. Phys. 2009, 106, 103703. [Google Scholar] [CrossRef]
- Xie, W.; Jin, Q.; Tang, X. The preparation and thermoelectric properties of Ti0.5Zr0.25Hf0.25Co1−xNixSb half-Heusler compounds. J. Appl. Phys. 2008, 103, 043711. [Google Scholar] [CrossRef]
- Wu, T.; Jiang, W.; Li, X.; Zhou, Y.; Chen, L. Thermoelectric properties of p-type Fe-doped TiCoSb half-Heusler compounds. J. Appl. Phys. 2007, 102, 103705. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, L.; Feng, C.; Wang, D.; Li, J.-F. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb. J. Appl. Phys. 2007, 101, 113714. [Google Scholar]
- Xie, W.-J.; Tang, X.-F.; Zhang, Q.-J. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds. Chin. Phys. 2007, 16, 3549–3552. [Google Scholar]
- Stopa, T.; Tobola, J.; Kaprzyk, S. Residual conductivity and seebeck coefficient calculations in TiCo1−xCuxSb alloys. In Proceedings of 25th International Conference on Thermoelectrics, Vienna, Austria, 2006; p. 4.
- Zhou, M.; Chen, L.D.; Zhang, W.Q.; Feng, C.D. Disorder scattering effect on the high-temperature lattice thermal conductivity of TiCoSb-based half-Heusler compounds. J. Appl. Phys. 2005, 98, 013708. [Google Scholar] [CrossRef]
- Zhou, M.; Feng, C.D.; Chen, L.D.; Huang, X.Y. Effects of partial substitution of Co by Ni on the high-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds. J. Alloy. Compd. 2005, 391, 194–197. [Google Scholar] [CrossRef]
- Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamanaka, S. Thermoelectric properties of (Ti,Zr,Hf)CoSb type half-Heusler compounds. Mater. Trans. 2005, 46, 1481–1484. [Google Scholar]
- Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamasaka, S. Thermoelectric and thermophysical properties of TiCoSb,ZrCoSb,HfCoSb prepared by SPS. In Proceedings of 24th International Conference on Thermoelectrics, Clemson, SC, USA, 2005; pp. 347–350.
- Zhou, M.; Feng, C.D.; Chen, L.D.; Huang, X.Y. Effects of partial substitution of Co by Ni on the electrical transport properties of TiCoSb-based half-Heusler compounds. Rare Metal Mat. Eng. 2003, 32, 488–490. [Google Scholar]
- Xia, Y.; Ponnambalam, V.; Bhattacharya, S.; Pope, A.L.; Poon, S.J.; Tritt, T.M. Electrical transport properties of TiCoSb half-Heusler phases that exhibit high resistivity. J. Phys. Condens. Mat. 2001, 13, 77–89. [Google Scholar]
- Xia, Y.; Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Poon, S.J.; Tritt, T.M. Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases. J. Appl. Phys. 2000, 88, 1952–1955. [Google Scholar]
- Poon, S.J.; Tritt, T.M.; Xi, Y.; Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Littleton, R.T.; Browning, V.M. Bandgap Features and Thermoelectric Properties of Ti-Based Half-Heusler Alloys. In Proceedings of Eighteenth International Conference on Thermoelectrics, Maryland, MD, USA, 1999; pp. 45–51.
- Tobola, J.; Pierre, J.; Kaprzyk, S.; Skolozdra, R.V.; Kouacou, M.A. Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration. J. Phys. Condens. Mat. 1998, 10, 1013–1032. [Google Scholar] [CrossRef]
- Kuentzler, R.; Clad, R.; Schmerber, G.; Dossmann, Y. Gap at the fermi level and magnetism in RMSn ternary compounds (R = Ti, Zr, Hf and M=Fe, Co, Ni). J. Magn. Magn. Mater. 1992, 104, 1976–1978. [Google Scholar] [CrossRef]
- Aliev, F.G. Gap at fermi level in some new d-electron and f-electron intermetallic compounds. Physica B 1991, 171, 199–205. [Google Scholar]
- Aliev, F.G.; Kozyrkov, V.V.; Moshchalkov, V.V.; Scolozdra, R.V.; Durczewski, K. Narrow-band in the intermetallic compounds TiNiSn, ZrNiSn, HfNiSn. Z. Phys. B 1990, 80, 353–357. [Google Scholar]
- Bhattacharya, S.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadani, N.; Tritt, T.M. Reductions in the Lattice Thermal Conductivity of Ball-Milled and Shock Compacted TiNiSn1−xSbx Half-Heusler Alloys. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 155–160. [Google Scholar]
- Tritt, T.M.; Bhattacharya, S.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Effects of Various Grain Structure and Sizes on the Thermal Conductivity of Ti-Based Half-Heusler Alloys. In Thermoelectric Materials 2001-Research and Applications; Nolas, G.S., Johnson, D.C., Mandrus, D.G., Eds.; Cambridge University Press: New York, NY, USA, 2001; Volume 691, pp. 7–12. [Google Scholar]
- Xie, H.H.; Yu, C.; Zhu, T.J.; Fu, C.G.; Snyder, G.J.; Zhao, X.B. Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates. Appl. Phys. Lett. 2012, 100, 254104. [Google Scholar]
- Takas, N.J.; Sahoo, P.; Misra, D.; Zhao, H.; Henderson, N.L.; Stokes, K.; Poudeu, P.F.P. Effects of Ir substitution and processing conditions on thermoelectric performance of p-type Zr0.5Hf0.5Co1−xIrxSb0.99sn0.01 half-Heusler alloys. J. Electron. Mater. 2011, 40, 662–669. [Google Scholar] [CrossRef]
- Yaqub, R.; Sahoo, P.; Makongo, J.P.A.; Takas, N.; Poudeu, P.F.P.; Stokes, K.L. Investigation of the effect of NiO nanoparticles on the transport properties of Zr0.5Hf0.5Ni1−xPdxSn0.99Sb0.01 (x = 0 and 0.2). Sci. Adv. Mater. 2011, 3, 633–638. [Google Scholar] [CrossRef]
- Joshi, G.; Yan, X.; Wang, H.; Liu, W.; Chen, G.; Ren, Z. Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach. Adv. Energy Mater. 2011, 1, 643–647. [Google Scholar]
- Yan, X.; Joshi, G.; Liu, W.; Lan, Y.; Wang, H.; Lee, S.; Simonson, J.W.; Poon, S.J.; Tritt, T.M.; Chen, G.; et al. Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett. 2011, 11, 556–560. [Google Scholar]
- Yu, C.; Zhu, T.J.; Xiao, K.; Shen, J.J.; Yang, S.H.; Zhao, X.B. Reduced grain size and improved thermoelectric properties of melt spun (Hf,Zr)NiSn half-Heusler alloys. J. Electron. Mater. 2010, 39, 2008–2012. [Google Scholar]
- Zhou, M.; Li, J.F.; Guo, P.J.; Takuji, K. Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity. J. Phys. D 2010, 43, 415403. [Google Scholar]
- Yu, C.; Zhu, T.-J.; Xiao, K.; Jin, J.; Shen, J.-J.; Yang, S.-H.; Zhao, X.-B. Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning. J. Inorg. Mater. 2010, 25, 569–572. [Google Scholar]
- Huang, X.Y.; Xu, Z.; Chen, L.D. The thermoelectric performance of ZrNiSn-ZrO2 composites. Solid State Commun. 2004, 130, 181–185. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xu, Z.; Chen, L.D.; Tang, X.F. Effect of γ-Al2O3 content on the thermoelectric performance of ZrNiSn/γ-Al2O3 composites. Key Eng. Mater. 2003, 249, 79–82. [Google Scholar] [CrossRef]
- Xie, W.J.; He, J.; Zhu, S.; Su, X.L.; Wang, S.Y.; Holgate, T.; Graff, J.W.; Ponnambalam, V.; Poon, S.J.; Tang, X.F.; Zhang, Q.J.; Tritt, T,M. Simultaneously optimizing the independent thermoelectric properties in (Ti,Zr,Hf)(Co,Ni)Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 2010, 58, 4705–4713. [Google Scholar]
- Makongo, J.P.A.; Misra, D.K.; Zhou, X.; Pant, A.; Shabetai, M.R.; Su, X.; Uher, C.; Stokes, K.L.; Poudeu, P.F.P. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 2011, 133, 18843–18852. [Google Scholar]
- Jeitschk, W. Transition metal stannides with MgAgAs and MnCu2Al-type structure. Metall. Trans. 1970, 1, 3159. [Google Scholar]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Ch. 2011, 39, 1–50. [Google Scholar]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar]
- Yu, C.; Zhu, T.-J.; Shi, R.-Z.; Zhang, Y.; Zhao, X.-B.; He, J. High-performance half-heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 2009, 57, 2757–2764. [Google Scholar] [CrossRef]
- Populoh, S.; Aguirre, M.H.; Brunko, O.C.; Galazka, K.; Lu, Y.; Weidenkaff, A. High figure of merit in (Ti,Zr,Hf)NiSn half-Heusler alloys. Scripta Mater. 2012, 66, 1073–1076. [Google Scholar] [CrossRef]
- Culp, S.R.; Simonson, J.W.; Poon, S.J.; Ponnambalam, V.; Edwards, J.; Tritt, T.M. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials. Appl. Phys. Lett. 2008, 93, 022105. [Google Scholar]
- Kawano, K.; Kurosaki, K.; Muta, H.; Yamanaka, S. Substitution effect on the thermoelectric properties of p-type half-Heusler compounds: ErNi1−xPdxSb. J. Appl. Phys. 2008, 104, 013714. [Google Scholar]
- Kimura, Y.; Tanoguchi, T.; Kita, T. Vacancy site occupation by Co and Ir in half-Heusler ZrNiSn and conversion of the thermoelectric properties from n-type to p-type. Acta Mater. 2010, 58, 4354–4361. [Google Scholar] [CrossRef]
- Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamanaka, S. High-thermoelectric figure of merit realized in p-type half-Heusler compounds: ZrCoSnxSb1−x. J. Appl. Phys. 2007, 46, 673–675. [Google Scholar]
- Culp, S.; Poon, S.J.; Hickman, N.; Tritt, T.M.; Blumm, J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 2006, 88, 042106. [Google Scholar]
- Sakurada, S.; Shutoh, N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005, 86, 2105. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Ren, Z.F.; Dresselhaus, G.; Henry, A.; Fleurial, J.P. New composite thermoelectric materials for energy harvesting applications. JOM 2009, 61, 86–90. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Ren, Z.F.; McEnaney, K.; Dresselhaus, G.; Fleurial, J.P. The Promise of Nanocomposite Thermoelectric Materials. In Materials and Devices for Thermal-to-Electric Energy Conversion; Yang, J., Nolas, G.S., Koumoto, K., Grin, Y., Eds.; Cambridge University Press: New York, USA, 2009; Volume 1166, pp. 29–41. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Ren, Z.; Fleurial, J.-P.; Gogna, P.; Tang, M.Y.; Vashaee, D.; Lee, H.; Wang, X.; Joshi, G. Nanocomposites to Enhance ZT in Thermoelectrics. In Thermoelectric Power Generation; Hogan, T.P., Yang, J., Funahashi, R., Tritt, T.M., Eds.; Cambridge University Press: New York, NY, USA, 2008; Volume 1044, pp. 29–41. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.-P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Yang, R.G.; Chen, G.; Dresselhaus, M.S. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 2005, 72, 125411. [Google Scholar] [CrossRef]
- Yang, R.G.; Chen, G. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 2004, 69, 195316. [Google Scholar] [CrossRef]
- Harris, T.; Lee, H.; Wang, D.Z.; Huang, J.Y.; Ren, Z.F.; Klotz, B.; Dowding, R.; Dresselhaus, M.S.; Chen, G. Thermal Conductivity Reduction of SiGe Nanocomposites. In Thermoelectric Materials 2003-Research and Applications; Nolas, G.S., Yang, J., Hogan, T.P., Johnson, D.C., Eds.; Cambridge University Press: New York, NY, USA, 2004; Volume 793, pp. 169–174. [Google Scholar]
- Kanatzidis, M.G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167. [Google Scholar]
- Pichanusakorn, P.; Bandaru, P. Nanostructured thermoelectrics. Mat. Sci. Eng. R 2010, 67, 19–63. [Google Scholar]
- Heremans, J.P.; Thrush, C.M.; Morelli, D.T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 2004, 70, 115334. [Google Scholar]
- Kishimoto, K.; Tsukamoto, M.; Koyanagi, T. Temperature dependence of the seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by RF sputtering. J. Appl. Phys. 2002, 92, 5331–5339. [Google Scholar]
- Nishio, Y.; Hirano, T. Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. J. Appl. Phys. 1997, 36, 170–174. [Google Scholar]
- Faleev, S.V.; Leonard, F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 2008, 77, 214304. [Google Scholar]
- Makongo, J.P.A.; Misra, D.K.; Salvador, J.R.; Takas, N.J.; Wang, G.; Shabetai, M.R.; Pant, A.; Paudel, P.; Uher, C.; Stokes, K.L.; et al. Thermal and electronic charge transport in bulk nanostructured Zr0.25Hf0.75NiSn composites with full-Heusler inclusions. J. Solid State Chem. 2011, 184, 2948–2960. [Google Scholar] [CrossRef]
- Misra, D.K.; Makongo, J.P.A.; Sahoo, P.; Shabetai, M.R.; Paudel, P.; Stokes, K.L.; Poudeu, P.F.P. Microstructure and thermoelectric properties of mechanically alloyed Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01/WO3 half-heusler composites. Sci. Adv. Mater. 2011, 3, 607–614. [Google Scholar] [CrossRef]
- Chen, L.D.; Huang, X.Y.; Zhou, M.; Shi, X.; Zhang, W.B. The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions. J. Appl. Phys. 2006, 99, 064305. [Google Scholar]
- Huang, X.Y.; Chen, L.D.; Shi, X.; Zhou, M.; Xu, Z. Thermoelectric performances of ZrNiSn/C-60 composite. Key Eng. Mater. 2005, 280–283, 385–388. [Google Scholar] [CrossRef]
- Poon, S.J.; Wu, D.; Zhu, S.; Xie, W.; Tritt, T.M.; Thomas, P.; Venkatasubramanian, R. Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials. J. Mater. Res. 2011, 26, 2795–2802. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Tritt, T.M.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Grain structure effects on the lattice thermal conductivity of Ti-based half-heusler alloys. Appl. Phys. Lett. 2002, 81, 43–45. [Google Scholar]
- Xie, H.H.; Mi, J.L.; Hu, L.P.; Lock, N.; Chirstensen, M.; Fu, C.G.; Iversen, B.B.; Zhao, X.B.; Zhu, T.J. Interrelation between atomic switching disorder and thermoelectric properties of zrnisn half-Heusler compounds. Crystengcomm 2012, 14, 4467–4471. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, T.; Xiao, K.; Shen, J.; Zhao, X. Microstructure and thermoelectric properties of (Zr,Hf)NiSn-based half-Heusler alloys by melt spinning and spark plasma sintering. Funct. Mater. Lett. 2010, 3, 227–231. [Google Scholar]
- Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 2012, 12, 2077–2082. [Google Scholar]
- Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y.; Wang, X.; Dresselhaus, M.; Ren, Z.; Chen, G. Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 2011, 11, 2225–2230. [Google Scholar]
- Xiong, Z.; Xi, L.; Ding, J.; Chen, X.; Huang, X.; Gu, H.; Chen, L.; Zhang, W. Thermoelectric nanocomposite from the metastable void filling in caged skutterudite. J. Mater. Res. 2011, 26, 1848–1856. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, X.; Huang, X.; Bai, S.; Chen, L. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 2010, 58, 3995–4002. [Google Scholar] [CrossRef]
- Eilertsen, J.; Rouvimov, S.; Subramanian, M.A. Rattler-seeded insb nanoinclusions from metastable indium-filled In0.1Co4Sb12 skutterudites for high-performance thermoelectrics. Acta Mater. 2012, 60, 2178–2185. [Google Scholar] [CrossRef]
- Eilertsen, J.; Berthelot, R.; Sleight, A.W.; Subramanian, M.A. Structure and transport behavior of in-filled cobalt rhodium antimonide skutterudites. J. Solid State Chem. 2012, 190, 238–245. [Google Scholar] [CrossRef]
- Chai, Y.W.; Kimura, Y. Nanosized precipitates in half-Heusler TiNiSn alloy. Appl. Phys. Lett. 2012, 100, 033114. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Li, H.; Yin, K.; Sharp, J.; Zhou, X.; Uher, C. Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1−ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration. J. Mater. Chem. 2012, 22, 13653–13661. [Google Scholar]
- Chen, Z.; Sakamoto, J.; Morelli, D.; Xiaoyuan, Z.; Guoyu, W.; Uher, C. Thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. J. Appl. Phys. 2011, 109, 06372. [Google Scholar]
- Zhang, S.N.; Zhu, T.J.; Yang, S.H.; Yu, C.; Zhao, X.B. Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. J Alloy. Compd. 2010, 499, 215–220. [Google Scholar] [CrossRef]
- He, J.Q.; Girard, S.N.; Kanatzidis, M.G.; Dravid, V.P. Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials. Adv. Funct. Mater. 2010, 20, 764–772. [Google Scholar] [CrossRef]
- Ke, X.; Chen, C.; Yang, J.; Wu, L.; Zhou, J.; Li, Q.; Zhu, Y.; Kent, P.R.C. Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. Phys. Rev. Lett. 2009, 103, 145502. [Google Scholar] [CrossRef]
- Xie, W.; He, J.; Kang, H.J.; Tang, X.; Zhu, S.; Laver, M.; Wang, S.; Copley, J.R.D.; Brown, C.M.; Zhang, Q.; et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Lett. 2010, 10, 3283–3289. [Google Scholar] [CrossRef]
- Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T.M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 2009, 94, 102111. [Google Scholar]
- Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T.M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 2009, 105, 113713. [Google Scholar] [CrossRef]
- Li, H.; Tang, X.; Su, X.; Zhang, Q.; Uher, C. Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. D 2009, 42, 145409. [Google Scholar] [CrossRef]
- Li, H.; Tang, X.; Su, X.; Zhang, Q. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 2008, 92, 202114. [Google Scholar] [CrossRef]
- Tang, X.; Xie, W.; Li, H.; Zhao, W.; Zhang, Q.; Niino, M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 2007, 90, 012102. [Google Scholar]
- Lan, Y.; Minnich, A.J.; Chen, G.; Ren, Z. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 2010, 20, 357–376. [Google Scholar]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.W.; Cuff, D.C.; Tang, M.Y.; Dresselhaus, M.S.; et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef]
- Ma, Y.; Hao, Q.; Poudel, B.; Lan, Y.; Yu, B.; Wang, D.; Chen, G.; Ren, Z. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 2008, 8, 2580–2584. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638. [Google Scholar]
- Sharp, J.W.; Poon, S.J.; Goldsmid, H.J. Boundary scattering and the thermoelectric figure of merit. Phys. Status Solidi A 2001, 187, 507–516. [Google Scholar] [CrossRef]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal-conductivity of disordered crystals. Phys. Rev. B 1992, 46, 6131–6140. [Google Scholar] [CrossRef]
- Yu, C.; Xie, H.H.; Fu, C.G.; Zhu, T.J.; Zhao, X.B. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. J. Mater. Res. 2012, 27, 2457–2465. [Google Scholar] [CrossRef]
- Liu, W.S.; Yan, X.; Chen, G.; Ren, Z. F. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56. [Google Scholar]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar]
- Simonson, J.W.; Wu, D.; Xie, W.J.; Tritt, T.M.; Poon, S.J. Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys. Rev. B 2011, 83, 235211. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xie, W.; Weidenkaff, A.; Tang, X.; Zhang, Q.; Poon, J.; Tritt, T.M. Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials 2012, 2, 379-412. https://doi.org/10.3390/nano2040379
Xie W, Weidenkaff A, Tang X, Zhang Q, Poon J, Tritt TM. Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials. 2012; 2(4):379-412. https://doi.org/10.3390/nano2040379
Chicago/Turabian StyleXie, Wenjie, Anke Weidenkaff, Xinfeng Tang, Qingjie Zhang, Joseph Poon, and Terry M. Tritt. 2012. "Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds" Nanomaterials 2, no. 4: 379-412. https://doi.org/10.3390/nano2040379
APA StyleXie, W., Weidenkaff, A., Tang, X., Zhang, Q., Poon, J., & Tritt, T. M. (2012). Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials, 2(4), 379-412. https://doi.org/10.3390/nano2040379
