Valorization of Bio-Oil Aqueous Fractions Through Oxidative Steam Reforming over Co/CeO2-SBA-15 Catalysts: From Single Model Compounds to Complex Mixtures
Abstract
1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation and Characterization
2.2. Catalytic Test
3. Results and Discussion
3.1. Catalyst Characteristics
3.2. Oxidative Steam Reforming of Individual Model Compounds
3.3. Oxidative Steam Reforming of Bio-Oil Model Compound Mixtures
3.3.1. OSR of Aqueous Mixture of Three Model Compounds
3.3.2. OSR of Five Models Compound Aqueous Mixture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akadiri, S.S.; Özkan, O. Energy Markets, Geopolitical Risks, and Global Trade: A High-Stakes Tug of War. Geol. J. 2025, 1–15. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Opoku, E.E.O.; Aluko, O.A. The Roadmap to Net-Zero Emission: Do Geopolitical Risk and Energy Transition Matter? J. Public Aff. 2023, 23, e2882. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of Climate Change on the Fate of Contaminants through Extreme Weather Events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, F. The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Srirangan, K.; Akawi, L.; Moo-Young, M.; Chou, C.P. Towards Sustainable Production of Clean Energy Carriers from Biomass Resources. Appl. Energy 2012, 100, 172–186. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Martin-Martinez, F.J. Biorefineries: Achievements and Challenges for a Bio-Based Economy. Front. Chem. 2022, 10, 973417. [Google Scholar] [CrossRef]
- Meier, D. Pyrolysis Oil Biorefinery. Adv. Biochem. Eng. Biotechnol. 2017, 166, 301–337. [Google Scholar] [CrossRef]
- De Wild, P.; Reith, H.; Heeres, E. Biomass Pyrolysis for Chemicals. Biofuels 2011, 2, 185–208. [Google Scholar] [CrossRef]
- Khosravanipour Mostafazadeh, A.; Solomatnikova, O.; Drogui, P.; Tyagi, R.D. A Review of Recent Research and Developments in Fast Pyrolysis and Bio-Oil Upgrading. Biomass Convers. Biorefin. 2018, 8, 739–773. [Google Scholar] [CrossRef]
- Dada, T.K.; Sheehan, M.; Murugavelh, S.; Antunes, E. A Review on Catalytic Pyrolysis for High-Quality Bio-Oil Production from Biomass. Biomass Convers. Biorefin. 2021, 13, 2595–2614. [Google Scholar] [CrossRef]
- Stelmach, S.; Ignasiak, K.; Czardybon, A.; Bigda, J. Evaluation of Bio-Oils in Terms of Fuel Properties. Processes 2023, 11, 3317. [Google Scholar] [CrossRef]
- Christensen, E.D.; Chupka, G.M.; Luecke, J.; Smurthwaite, T.; Alleman, T.L.; Iisa, K.; Franz, J.A.; Elliott, D.C.; McCormick, R.L. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions. Energy Fuels 2011, 25, 5462–5471. [Google Scholar] [CrossRef]
- Xie, H.; Yu, Q.; Yao, X.; Duan, W.; Zuo, Z.; Qin, Q. Hydrogen Production via Steam Reforming of Bio-Oil Model Compounds over Supported Nickel Catalysts. J. Energy Chem. 2015, 24, 299–308. [Google Scholar] [CrossRef]
- Trane-Restrup, R.; Jensen, A.D. Steam Reforming of Cyclic Model Compounds of Bio-Oil over Ni-Based Catalysts: Product Distribution and Carbon Formation. Appl. Catal. B 2015, 165, 117–127. [Google Scholar] [CrossRef]
- Hu, X.; Lu, G. Investigation of the Steam Reforming of a Series of Model Compounds Derived from Bio-Oil for Hydrogen Production. Appl. Catal. B 2009, 88, 376–385. [Google Scholar] [CrossRef]
- Calles, J.A.; Carrero, A.; Vizcaíno, A.J.; García-Moreno, L.; Megía, P.J. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts. Int. J. Mol. Sci. 2019, 20, 512. [Google Scholar] [CrossRef] [PubMed]
- Bergem, H.; Xu, R.; Brown, R.C.; Huber, G.W. Low Temperature Aqueous Phase Hydrogenation of the Light Oxygenate Fraction of Bio-Oil over Supported Ruthenium Catalysts. Green. Chem. 2017, 19, 3252–3262. [Google Scholar] [CrossRef]
- Fermoso, J.; Hernando, H.; Jiménez-Sánchez, S.; Lappas, A.A.; Heracleous, E.; Pizarro, P.; Coronado, J.M.; Serrano, D.P. Bio-Oil Production by Lignocellulose Fast-Pyrolysis: Isolating and Comparing the Effects of Indigenous versus External Catalysts. Fuel Process. Technol. 2017, 167, 563–574. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, P.; Li, X.; Yu, Y. Steam Reforming of the Simulated Aqueous Fraction of Bio-Oil Based on Pre-Reforming with Dolomite. Fuel 2023, 344, 128116. [Google Scholar] [CrossRef]
- Plou, J.; Lachén, J.; Durán, P.; Herguido, J.; Peña, J.A. Pure Hydrogen from Lighter Fractions of Bio-Oil by Steam-Iron Process: Effect of Composition of Bio-Oil, Temperature and Number of Cycles. Fuel 2017, 203, 452–459. [Google Scholar] [CrossRef]
- Paasikallio, V.; Azhari, A.; Kihlman, J.; Simell, P.; Lehtonen, J. Oxidative Steam Reforming of Pyrolysis Oil Aqueous Fraction with Zirconia Pre-Conversion Catalyst. Int. J. Hydrogen Energy 2015, 40, 12088–12096. [Google Scholar] [CrossRef]
- Arandia, A.; Remiro, A.; García, V.; Castaño, P.; Bilbao, J.; Gayubo, A.G. Oxidative Steam Reforming of Raw Bio-Oil over Supported and Bulk Ni Catalysts for Hydrogen Production. Catalysts 2018, 8, 322. [Google Scholar] [CrossRef]
- Haynes, D.J.; Shekhawat, D. Chapter 6—Oxidative Steam Reforming. In Fuel Cells: Technologies for Fuel Processing; Elsevier: Amsterdam, The Netherlands, 2011; pp. 129–190. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Ruiz-Abad, M.; Calles, J.A.; Carrero, A. Coke Evolution in Simulated Bio-Oil Aqueous Fraction Steam Reforming Using Co/SBA-15. Catal. Today 2021, 367, 145–152. [Google Scholar] [CrossRef]
- Ochoa, A.; Bilbao, J.; Gayubo, A.G.; Castaño, P. Coke Formation and Deactivation during Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review. Renew. Sustain. Energy Rev. 2020, 119, 109600. [Google Scholar] [CrossRef]
- Nejat, T.; Jalalinezhad, P.; Hormozi, F.; Bahrami, Z. Hydrogen Production from Steam Reforming of Ethanol over Ni-Co Bimetallic Catalysts and MCM-41 as Support. J. Taiwan. Inst. Chem. Eng. 2019, 97, 216–226. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Zhang, S.; Wang, Y.; Hu, S.; Xiang, J.; Gholizadeh, M.; Hu, X. Used Ni/KIT-6 as a Sacrificial Catalyst for Mitigating Coking in Lower-Layer Catalyst in Steam Reforming of Acetic Acid. Fuel 2024, 357, 130063. [Google Scholar] [CrossRef]
- Blin, J.L.; Michelin, L.; Lebeau, B.; Naydenov, A.; Velinova, R.; Kolev, H.; Gaudin, P.; Vidal, L.; Dotzeva, A.; Tenchev, K.; et al. Co–Ce Oxides Supported on SBA-15 for VOCs Oxidation. Catalysts 2021, 11, 366. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Setiabudi, H.D.; Nanda, S.; Vo, D.V.N. Advanced Synthesis Strategies of Mesoporous SBA-15 Supported Catalysts for Catalytic Reforming Applications: A State-of-the-Art Review. Appl. Catal. A Gen. 2018, 559, 57–74. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized Mesoporous SBA-15 Silica: Recent Trends and Catalytic Applications. Nanoscale 2020, 12, 11333–11363. [Google Scholar] [CrossRef]
- Chong, C.C.; Teh, L.P.; Setiabudi, H.D. Syngas Production via CO2 Reforming of CH4 over Ni-Based SBA-15: Promotional Effect of Promoters (Ce, Mg, and Zr). Mater. Today Energy 2019, 12, 408–417. [Google Scholar] [CrossRef]
- Shanmugam, V.; Zapf, R.; Neuberg, S.; Hessel, V.; Kolb, G. Effect of Ceria and Zirconia Promotors on Ni/SBA-15 Catalysts for Coking and Sintering Resistant Steam Reforming of Propylene Glycol in Microreactors. Appl. Catal. B 2017, 203, 859–869. [Google Scholar] [CrossRef]
- Megía, P.J.; Morales, A.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Oxidative Steam Reforming of Acetic Acid on Ni Catalysts: Influence of the La Promotion on Mesostructured Supports. Int. J. Hydrogen Energy 2024, 52, 1136–1145. [Google Scholar] [CrossRef]
- Calles, J.A.; Carrero, A.; Vizcaíno, A.J. Ce and La Modification of Mesoporous Cu–Ni/SBA-15 Catalysts for Hydrogen Production through Ethanol Steam Reforming. Microporous Mesoporous Mater. 2009, 119, 200–207. [Google Scholar] [CrossRef]
- Pham, S.T.; Nguyen, M.B.; Le, G.H.; Pham, T.T.T.; Quan, T.T.T.; Nguyen, T.D.; Son, T.L.; Vu, T.A. Cellulose Conversion to 5 Hydroxymethyl Furfural (5-HMF) Using Al-Incorporated SBA-15 as Highly Efficient Catalyst. J. Chem. 2019, 2019, 5785621. [Google Scholar] [CrossRef]
- Carrero, A.; Vizcaíno, A.J.; Calles, J.A.; García-Moreno, L. Hydrogen Production through Glycerol Steam Reforming Using Co Catalysts Supported on SBA-15 Doped with Zr, Ce and La. J. Energy Chem. 2017, 26, 42–48. [Google Scholar] [CrossRef]
- Tao, J.; Zhao, L.; Dong, C.; Lu, Q.; Du, X.; Dahlquist, E. Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts. Energies 2013, 6, 3284–3296. [Google Scholar] [CrossRef]
- Chirinos, C.A.; Moreno de la Calle, Á.; Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Exploring CeO2-Doped Co/SBA-15 Catalysts for Acetic Acid Oxidative Steam Reforming. Appl. Sci. 2025, 15, 6376. [Google Scholar] [CrossRef]
- Greluk, M.; Rotko, M.; Słowik, G.; Turczyniak-Surdacka, S. Hydrogen Production by Steam Reforming of Ethanol over Co/CeO2 Catalysts: Effect of Cobalt Content. J. Energy Inst. 2019, 92, 222–238. [Google Scholar] [CrossRef]
- Da Costa-Serra, J.F.; Miralles-Martínez, A.; García-Muñoz, B.; Maestro-Cuadrado, S.; Chica, A. Ni and Co-Based Catalysts Supported on ITQ-6 Zeolite for Hydrogen Production by Steam Reforming of Ethanol. Int. J. Hydrogen Energy 2023, 48, 26518–26525. [Google Scholar] [CrossRef]
- Megía, P.J.; Cortese, M.; Ruocco, C.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A.; Palma, V. Catalytic Behavior of Co-Based Catalysts in the Kinetic Study of Acetic Acid Steam Reforming. Ind. Eng. Chem. Res. 2020, 59, 19531–19538. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Carrero, A.; Calles, J.A. Comparison of Ethanol Steam Reforming Using Co and Ni Catalysts Supported on SBA-15 Modified by Ca and Mg. Fuel Process. Technol. 2016, 146, 99–109. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Z.; Yang, M.; Zou, J.; Liu, G.; Zhang, X. Highly Dispersible Cerium-Oxide Modified Ni/SBA-15 for Steam Reforming of Bio-Mass Based JP10. Chin. J. Chem. Eng. 2022, 43, 255–265. [Google Scholar] [CrossRef]
- Tladi-Baloyi, B.C.; Tshabalala, Z.P.; Kroon, R.E.; Swart, H.C.; Motaung, D.E. Effect of Ru-Loading on the Sensing Capabilities of Co3O4/RGO for LPG Detection at Low Temperature. Mater. Sci. Semicond. Process 2026, 205, 110331. [Google Scholar] [CrossRef]
- Li, S.S.; Xu, Q.Q.; Xu, J.T.; Yan, G.; Zhang, Y.X.; Li, S.W.; Yin, L.C. Engineering Co2+/Co3+ Redox Activity of Ni-Mediated Porous Co3O4 Nanosheets for Superior Hg(II) Electrochemical Sensing: Insight into the Effect of Valence Change Cycle and Oxygen Vacancy on Electroanalysis. Sens. Actuators B Chem. 2022, 354, 131095. [Google Scholar] [CrossRef]
- Chirinos, C.A.; Liu, S.; Cortés Corberán, V.; Gómez-Sainero, L.M. Effect of Sm2O3 Doping of CeO2-Supported Ni Catalysts for H2 Production by Steam Reforming of Ethanol. Catalysts 2025, 15, 131. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Buettner, M.; Ranganathan, R.V.; Uddi, M.; Wang, R. Metal–Support Interactions in CeO2- and SiO2-Supported Cobalt Catalysts: Effect of Support Morphology, Reducibility, and Interfacial Configuration. ACS Appl. Mater. Interfaces 2019, 11, 17035–17049. [Google Scholar] [CrossRef]
- Zhurka, M.D.; Kechagiopoulos, P.N. Comparative Analysis of Aromatic Compounds Steam Reforming over Rh Supported on γ-Al2O3. Front. Chem. Sci. Eng. 2025, 19, 1–18. [Google Scholar] [CrossRef]
- Artetxe, M.; Alvarez, J.; Nahil, M.A.; Olazar, M.; Williams, P.T. Steam Reforming of Different Biomass Tar Model Compounds over Ni/Al2O3 Catalysts. Energy Convers. Manag. 2017, 136, 119–126. [Google Scholar] [CrossRef]
- Wang, S.; Cai, Q.; Zhang, F.; Li, X.; Zhang, L.; Luo, Z. Hydrogen Production via Catalytic Reforming of the Bio-Oil Model Compounds: Acetic Acid, Phenol and Hydroxyacetone. Int. J. Hydrogen Energy 2014, 39, 18675–18687. [Google Scholar] [CrossRef]
- Deng, Y.; Li, S.; Appels, L.; Dewil, R.; Zhang, H.; Baeyens, J.; Mikulcic, H. Producing Hydrogen by Catalytic Steam Reforming of Methanol Using Non-Noble Metal Catalysts. J. Environ. Manag. 2022, 321, 116019. [Google Scholar] [CrossRef]
- Polychronopoulou, K.; Bakandritsos, A.; Tzitzios, V.; Fierro, J.L.G.; Efstathiou, A.M. Absorption-Enhanced Reforming of Phenol by Steam over Supported Fe Catalysts. J. Catal. 2006, 241, 132–148. [Google Scholar] [CrossRef]
- Sayas, S.; Da Costa-Serra, J.F.; Chica, A. Sustainable Production of Hydrogen via Steam Reforming of Furfural (SRF) with Co-Catalyst Supported on Sepiolite. Int. J. Hydrogen Energy 2021, 46, 17481–17489. [Google Scholar] [CrossRef]
- Ahmed, T.Y.; Tanksale, A.; Hoadley, A.F.A. A Kinetic Model for Air-Steam Reforming of Bio-Oil over Rh–Ni/γ-Al2O3 Catalyst: Acetol as a Model Compound. Int. J. Hydrogen Energy 2020, 45, 24300–24311. [Google Scholar] [CrossRef]
- Bkangmo Kontchouo, F.M.; Shao, Y.; Zhang, S.; Gholizadeh, M.; Hu, X. Steam Reforming of Ethanol, Acetaldehyde, Acetone and Acetic Acid: Understanding the Reaction Intermediates and Nature of Coke. Chem. Eng. Sci. 2023, 265, 118257. [Google Scholar] [CrossRef]
- Palmeri, N.; Chiodo, V.; Freni, S.; Frusteri, F.; Bart, J.C.J.; Cavallaro, S. Hydrogen from Oxygenated Solvents by Steam Reforming on Ni/Al2O3 Catalyst. Int. J. Hydrogen Energy 2008, 33, 6627–6634. [Google Scholar] [CrossRef]
- Megía, P.J.; Rocha, C.; Vizcaíno, A.J.; Carrero, A.; Calles, J.A.; Madeira, L.M.; Soria, M.A. Thermodynamic Comparison between Conventional, Autothermal, and Sorption-Enhanced Bio-Oil Steam Reforming. Energy Fuels 2025, 39, 1652–1667. [Google Scholar] [CrossRef]
- Doddi, G.; Illuminati, G.; Mencarelli, P.; Stegel, F. Nucleophilic Substitution at the Pyrrole Ring. Comparison with Furan, Thiophene, and Benzene Rings in Piperidinodenitration. J. Org. Chem. 2002, 41, 2824–2826. [Google Scholar] [CrossRef]
- Remón, J.; Broust, F.; Volle, G.; García, L.; Arauzo, J. Hydrogen Production from Pine and Poplar Bio-Oils by Catalytic Steam Reforming. Influence of the bio-oil composition on the process. Int. J. Hydrogen Energy 2015, 40, 5593–5608. [Google Scholar] [CrossRef]
- Fogler, H.S. Elements of Chemical Reaction Engineering; Prentice-Hall: Upper Saddle, NJ, USA, 1999. [Google Scholar]
- Marrero, T.R.; Mason, E.A. Gaseous Diffusion Coefficients. J. Phys. Chem. Ref. Data 1972, 1, 3–118. [Google Scholar] [CrossRef]
- Emrie, D.B. Electrical Tortuosity in Nanostructured Mesoporous Silica Powder and Nanocomposite Membranes. Transp. Porous Media 2024, 151, 1811–1824. [Google Scholar] [CrossRef]
- Pisani, L. Simple Expression for the Tortuosity of Porous Media. Transp. Porous Media 2011, 88, 193–203. [Google Scholar] [CrossRef]
- Su, S.; Chi, Y.; Chang, R.; Hu, R.; Li, N. Analysis of the Catalytic Steam Gasification Mechanism of Biomass. Int. J. Hydrogen Energy 2015, 40, 935–940. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Chen, M.; Hu, J.; Tang, Z.; Liang, D.; Cheng, W.; Yang, Z.; Wang, J.; Zhang, H. Influence of CoAl2O4 Spinel and Co-Phyllosilicate Structures Derived from Co/Sepiolite Catalysts on Steam Reforming of Bio-Oil for Hydrogen Production. Fuel 2020, 279, 118449. [Google Scholar] [CrossRef]
- Di Stasi, C.; Cortese, M.; Greco, G.; Renda, S.; González, B.; Palma, V.; Manyà, J.J. Optimization of the Operating Conditions for Steam Reforming of Slow Pyrolysis Oil over an Activated Biochar-Supported Ni–Co Catalyst. Int. J. Hydrogen Energy 2021, 46, 26915–26929. [Google Scholar] [CrossRef]










| Sample | Ce a | Co a | SBET | Vp b | Dp c | DCo0 d | Reducibility |
|---|---|---|---|---|---|---|---|
| (wt. %) | (wt. %) | (m2/g) | (cm3/g) | (nm) | (nm) | (%) | |
| Co/10CeO2-SBA-15 | 12.3 | 7.4 | 344 | 0.77 | 8.9 | 4.2 | ~100 |
| Co/20CeO2-SBA-15 | 23.3 | 7.1 | 303 | 0.62 | 8.2 | n.d. e | 97 |
| Compound | CH4 (%mol) | CO (%mol) | CO2 (%mol) | Acetone (%mol) |
|---|---|---|---|---|
| Acetic Acid | 2.51 | 22.69 | 74.66 | 0.14 |
| Methanol | 1.83 | 36.04 | 62.13 | 0.00 |
| Hydroxyacetone | 4.94 | 23.48 | 71.38 | 0.19 |
| Phenol | 0.00 | 27.67 | 72.33 | 0.00 |
| Furfural | 0.00 | 19.58 | 80.42 | 0.00 |
| Compound | Coke Deposition (mgcoke/gcat·h) | Ycoke (%mol) | Trange, TG (°C) |
|---|---|---|---|
| Acetic Acid | 7.3 | 0.27 | 330–650 |
| Methanol | 5.1 | 0.21 | 340–630 |
| Hydroxyacetone | 5.5 | 0.22 | 300–620 |
| Phenol | 3.6 | 0.43 | 330–640 |
| Furfural | 5.9 | 0.84 | 360–620 |
| Catalyst | Reaction Type/Feedstock | Operating Conditions | H2 Yield/Conversion | Reference |
|---|---|---|---|---|
| Co/SBA-15 | Steam reforming/Simulated bio-oil aqueous phase: phenol, hydroxyacetone, and acetic acid | T = 600 °C; S/C = 1.1; WHSV = 30.2 h−1; TOS = 50 h | H2 yield = 57%/Conversion = 80% | [24] |
| Ni-Co/SBA-15 | Steam reforming/Simulated bio-oil aqueous phase: acetic acid, hydroxyacetone, phenol, and furfural | T = 600 °C; S/C = 0.95; Wcat = 300 mg; TOS = 50 h | H2 yield = 56%/Conversion > 95% | [16] |
| CoAl2O4 | Steam reforming/Simulated bio-oil aqueous phase: ethanol, acetic acid, acetone, and phenol | T = 700 °C; S/C = 3; WHSV = 10.6 h−1; TOS = 4 h | H2 yield = 30%/Conversion = 60% | [65] |
| Co/Sepiolite | Steam reforming/Simulated bio-oil aqueous phase: ethanol, acetic acid, acetone, and phenol | T = 700 °C; S/C = 3; WHSV = 10.6 h−1; TOS = 50 h | H2 yield = 63%/Conversion = 76% | [65] |
| Co-Ni/Biochar | Steam reforming/Slow-pyrolysis bio-oil | T = 700 °C; S/C = 3.87; LHSV = 1.47 h−1; TOS = 13 h | H2 selectivity = 55%/Conversion = 65% | [66] |
| Co/10CeO2-SBA-15 | Oxidative steam reforming/Simulated bio-oil aqueous phase: acetic acid, methanol, hydroxyacetone, phenol, and furfural | T = 550 °C; S/C = 6; O2/C = 0.0375; WHSV = 30.2 h−1; TOS = 50 h | H2 yield = 68%/Conversion = 96% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chirinos, C.A.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A.; Megía, P.J. Valorization of Bio-Oil Aqueous Fractions Through Oxidative Steam Reforming over Co/CeO2-SBA-15 Catalysts: From Single Model Compounds to Complex Mixtures. Nanomaterials 2026, 16, 85. https://doi.org/10.3390/nano16020085
Chirinos CA, Vizcaíno AJ, Calles JA, Carrero A, Megía PJ. Valorization of Bio-Oil Aqueous Fractions Through Oxidative Steam Reforming over Co/CeO2-SBA-15 Catalysts: From Single Model Compounds to Complex Mixtures. Nanomaterials. 2026; 16(2):85. https://doi.org/10.3390/nano16020085
Chicago/Turabian StyleChirinos, Carlos A., Arturo J. Vizcaíno, José A. Calles, Alicia Carrero, and Pedro J. Megía. 2026. "Valorization of Bio-Oil Aqueous Fractions Through Oxidative Steam Reforming over Co/CeO2-SBA-15 Catalysts: From Single Model Compounds to Complex Mixtures" Nanomaterials 16, no. 2: 85. https://doi.org/10.3390/nano16020085
APA StyleChirinos, C. A., Vizcaíno, A. J., Calles, J. A., Carrero, A., & Megía, P. J. (2026). Valorization of Bio-Oil Aqueous Fractions Through Oxidative Steam Reforming over Co/CeO2-SBA-15 Catalysts: From Single Model Compounds to Complex Mixtures. Nanomaterials, 16(2), 85. https://doi.org/10.3390/nano16020085

