Preparation and Characterization of PVDF/PVPylated-TiO2 Composite Membrane with Enhanced Antifouling Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Set-Up
2.2. Membrane Preparation
2.3. Stability of Casting Solution
2.4. Membrane Characterization
2.5. Antifouling Performance Assessment
2.5.1. XDLVO Theory Analysis
2.5.2. Foulant Filtration
2.5.3. Critical Flux and Fouling Rate
3. Results and Discussion
3.1. Stability Analysis of Casting Solution
3.2. Membrane Characterizations
3.3. Assessment of Membrane Antifouling Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, N.; Yu, J.; Chen, X.; Liu, L. A novel organic solvent ultrafiltration membrane of polyimide/polyethyleneimine@TiO2 with high solvent permeability. J. Membr. Sci. 2024, 702, 122796. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, Z.; Dong, X.; You, H.; Mei, J.; Hou, X.; Liang, Z.; Li, Z. Preparation and Characterization of MWCNTs/PVDF Conductive Membrane with Cross-Linked Polymer PVA and Study on Its Anti-Fouling Performance. Membranes 2021, 11, 703. [Google Scholar] [CrossRef]
- Long, Y.; Yu, G.; Dong, L.; Xu, Y.; Lin, H.; Deng, Y.; You, X.; Yang, L.; Liao, B.Q. Synergistic fouling behaviors and mechanisms of calcium ions and polyaluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process. Water Res. 2021, 189, 116665. [Google Scholar] [CrossRef]
- Shen, Y.; Tan, Q.; Sun, J.; Cai, X.; Shen, L.; Lin, H.; Wei, X. Membrane fouling characteristics and mechanisms in coagulation-ultrafiltration process for treating microplastic-containing water. Sci. Total Environ. 2024, 954, 176524. [Google Scholar] [CrossRef]
- Niu, C.; Li, X.; Dai, R.; Wang, Z. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Res. 2022, 216, 118299. [Google Scholar] [CrossRef]
- Zhao, X.; Lan, Y.; Yang, K.; Wang, R.; Cheng, L.; Gao, C. Antifouling modification of PVDF membranes via in situ mixed-charge copolymerization and TiO2 mineralization. Appl. Surf. Sci. 2020, 525, 146564. [Google Scholar] [CrossRef]
- Song, Y.; Yan, M.; Xu, Z.; He, B.; Wu, B.; Li, J.; Cui, Z. Preparation of PVDF@TiO2 hybrid membrane and the research of the “hydration layer & rigid layer obstruction-electrostatic coalescence” anti-oil fouling mechanism. J. Membr. Sci. 2024, 710, 123159. [Google Scholar]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A survey of structure—Property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Lowe, S.; O’Brien-Simpson, N.M.; Connal, L.A. Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015, 6, 198–212. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, N.K.; Osuji, C.O. Fouling resistant nanofiltration membranes from self-assembled quaternary ammonium monomers. J. Membr. Sci. 2025, 727, 124101. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, X.; Qin, L.; Li, X.; Meng, Q.; Shen, C.; Zhang, G. Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation. Chem. Eng. J. 2020, 379, 122368. [Google Scholar] [CrossRef]
- Arthi, R.; Jaikumar, V.; Muralidharan, P. Comparative performance analysis of electrospun TiO2 embedded poly(vinylidene fluoride) nanocomposite membrane for supercapacitors. J. Appl. Polym. Sci. 2020, 138, 50323. [Google Scholar] [CrossRef]
- Zhou, A.; Jia, R.; Wang, Y.; Sun, S.; Xin, X.; Wang, M.; Zhao, Q.; Zhu, H. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep. Purif. Technol. 2020, 234, 116099. [Google Scholar] [CrossRef]
- Taleb, H.; Gopal, V.; Kanan, S.; Hashaikeh, R.; Hilal, N.; Darwish, N. Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives. Nanomaterials 2025, 15, 1151. [Google Scholar] [CrossRef]
- Mahdavi, H.; Mazinani, N.; Heidari, A.A. Poly(vinylidene fluoride) (PVDF)/PVDF-g-polyvinylpyrrolidone (PVP)/TiO2 mixed matrix nanofiltration membranes: Preparation and characterization. Polym. Int. 2020, 69, 1187–1195. [Google Scholar] [CrossRef]
- Marbelia, L.; Bilad, M.R.; Vankelecom, I.F.J. Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors. Sep. Purif. Technol. 2019, 213, 276–282. [Google Scholar] [CrossRef]
- Du, C.; Wang, Z.; Liu, G.; Wang, W.; Yu, D. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126790. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wang, Z.; Zhu, C.; Wu, Z. Modification of poly(vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability. J. Membr. Sci. 2014, 466, 293–301. [Google Scholar] [CrossRef]
- Zolkepli, H.; Chia, W.Q.; Othman, R.; Awang, K.; Hazni, H.; Sulaiman, S.N.; Saidin, S.H.; Singh, M.S.J.; Miras, J.; Widodo, R.T.; et al. Harnessing Brucea Javanica: Development and characterization of lipid-based niosomes for diabetes treatment. Colloids Surf. A Physicochem. Eng. Asp. 2025, 709, 136151. [Google Scholar] [CrossRef]
- Feng, J.; Chai, X.; Dai, X.; Wu, B. Destabilization of colloidal particles induced by in-situ calcium carbonate crystallization with implications on highly-efficient removal of insoluble matter from anaerobic digestate liquor. Sep. Purif. Technol. 2025, 370, 133251. [Google Scholar] [CrossRef]
- Elmizadeh, A.; Goli, S.A.H.; Mohammadifar, M.A.; Rahimmalek, M. Fabrication and characterization of pectin-zein nanoparticles containing tanshinone using anti-solvent precipitation method. Int. J. Biol. Macromol. 2024, 260, 129463. [Google Scholar] [CrossRef]
- Luo, M.; Qi, X.; Ren, T.; Huang, Y.; Keller, A.A.; Wang, H.; Wu, B.; Jin, H.; Li, F. Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. Colloids Surf. A Physicochem. Eng. Asp. 2017, 533, 9–19. [Google Scholar] [CrossRef]
- Maphosa, Y.; Adeyi, O.; Ikhu-Omoregbe, D.I.; Jideani, V.A. Bambara groundnut starch-soluble dietary fibre nanocomposite stabilised emulsions: Optimisation of emulsion stability and studies on time-dependent rheological properties. South. Afr. J. Chem. Eng. 2025, 51, 86–94. [Google Scholar] [CrossRef]
- Yang, C.; Yan, X.; Ma, C.; Lin, X.; Yao, C.; Li, X. Investigating mechanism of enhanced anti-fouling performance of MXene modified Janus MD membrane by XDLVO theory combined with surface elemental integration method. Process Saf. Environ. Prot. 2024, 185, 978–988. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, W.; Wang, Z.; Wu, S.; Wang, Z.; Wang, Y. Distinct membrane fouling mechanisms in vacuum membrane distillation: Interaction energy analysis with the XDLVO approach. Sep. Purif. Technol. 2025, 377, 134226. [Google Scholar] [CrossRef]
- Wang, A.; Xu, H.; Yao, C.; Ma, J.; Wang, J.; Hu, T.; Zong, D.; Lin, T.; Ding, M. Membrane fouling alleviation by thermal activation of hydrogen peroxide-membrane distillation hybrid system: Insights into interfacial phenomena and NOM-ion interactions. Desalination 2025, 604, 118701. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, X.; Geng, M.; Tian, J. Effect of membrane material and pore size on membrane fouling during filtration of algae-laden water. Water Sci. Eng. 2025, 18, 335–344. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, M.; Zhou, Y.; Yang, L.; Zhang, Y.; Wu, Z.; Liu, G.; Zheng, J. Preparation of Nano-TiO2-Modified PVDF Membranes with Enhanced Antifouling Behaviors via Phase Inversion: Implications of Nanoparticle Dispersion Status in Casting Solutions. Membranes 2022, 12, 386. [Google Scholar] [CrossRef]
- Cheng, H.; Li, Y.; Kato, H.; Li, Y.Y. Enhancement of sustainable flux by optimizing filtration mode of a high-solid anaerobic membrane bioreactor during long-term continuous treatment of food waste. Water Res. 2020, 168, 115195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Wang, Q.; Pan, C.; Wu, Z. Comparison of antifouling behaviours of modified PVDF membranes by TiO2 sols with different nanoparticle size: Implications of casting solution stability. J. Membr. Sci. 2017, 525, 378–386. [Google Scholar] [CrossRef]
- Tan, Y.; Liang, Q.; Hong, Q.; Zhang, S.; Jiang, T.; Li, Z.; Feng, J. Preparation and characterization of Zein/sodium alginate nanoparticle-stabilised Artemisia argyi essential oil Pickering emulsions for agricultural antifungal applications. Chem. Eng. J. 2025, 520, 165792. [Google Scholar] [CrossRef]
- Cho, D.; Baik, J.-H.; Choi, D.-h.; Lee, C.S. Dispersion stability of 1-octanethiol coated Cu nanoparticles in a 1-octanol solvent for the application of nanoink. Appl. Surf. Sci. 2014, 309, 300–305. [Google Scholar] [CrossRef]
- Zhang, J.; Jian, Z.; Jiang, M.; Peng, B.; Zhang, Y.; Wu, Z.; Zheng, J. Influence of Dispersed TiO2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO2 Composite Membranes. Membranes 2022, 12, 1118. [Google Scholar] [CrossRef] [PubMed]
- Buonomenna, M.G.; Macchi, P.; Davoli, M.; Drioli, E. Poly(vinylidene fluoride) membranes by phase inversion: The role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur. Polym. J. 2007, 43, 1557–1572. [Google Scholar] [CrossRef]
- Tong, Y.; Zuo, C.; Ding, W.; Jiang, S.; Li, W.; Xing, W. Sulfonic nanohydrogelled surface-modified microporous polyvinylidene fluoride membrane with excellent antifouling performance for treating water-oil separation of kitchen wastewater. J. Membr. Sci. 2021, 628, 119113. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Kumar, S.R.; Nguyen, C.H.; Lee, J.W.; Tsai, H.; Hsieh, C.; Lue, S.J. High-permeability graphene oxide and poly(vinyl pyrrolidone) blended poly(vinylidene fluoride) membranes: Roles of additives and their cumulative effects. J. Membr. Sci. 2021, 619, 118773. [Google Scholar] [CrossRef]
- Xu, C.; Huang, W.; Lu, X.; Yan, D.; Chen, S.; Huang, H. Preparation of PVDF porous membranes by using PVDF-g-PVP powder as an additive and their antifouling property. Radiat. Phys. Chem. 2012, 81, 1763–1769. [Google Scholar] [CrossRef]
- Santoro, S.; Occhiuzzi, J.; Aquino, M.; Politano, A.; Straface, S.; D’Andrea, G.; Carrillo, C.; Mallada, R.; Garcia, A.; Estay, H.; et al. Green photocatalytic mixed matrix membranes for simultaneous arsenic photo-oxidation and water recovery via membrane distillation. Sep. Purif. Technol. 2024, 342, 127042. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Zhang, X.; Zheng, X.; Wu, Z. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture. Appl. Surf. Sci. 2015, 345, 418–427. [Google Scholar] [CrossRef]
- Hu, Y.; Ke, S.; Huang, Y. Simultaneous fouling and scaling-resistant membrane based on glutamic acid grafting for robust membrane distillation. Desalination 2024, 587, 117948. [Google Scholar] [CrossRef]







| Membranes | PVDF (wt.%) | DMSO (vol.%) | DMAc (vol.%) | TiO2 (wt.%) | PVP (wt.%) |
|---|---|---|---|---|---|
| P1 | 10 | 45 | 45 | 0.15 | 0 |
| P2 | 10 | 45 | 45 | 0.15 | 2 |
| P3 | 10 | 45 | 45 | 0.15 | 4 |
| P4 | 10 | 45 | 45 | 0.15 | 6 |
| Symbol | Physical Meaning |
|---|---|
| the LW component of surface tension for membrane | |
| the LW component of surface tension for probe liquid | |
| the LW component of surface tension for colloidal foulants | |
| the electron acceptor parameter of surface tension for membrane | |
| the electron acceptor parameter of surface tension for probe liquid | |
| the electron acceptor parameter of surface tension for colloidal foulants | |
| the electron donor parameter of surface tension for membrane | |
| the electron donor parameter of surface tension for probe liquid | |
| the electron donor parameter of surface tension for colloidal foulants |
| Membrane No. | Thickness (mm) | Porosity (%) | Water Permeability (L/(m2·h·kPa) |
|---|---|---|---|
| P1 | 0.26 ± 0.01 | 38.1 ± 5.4 | 92.4 ± 9.6 |
| P2 | 0.25 ± 0.01 | 47.2 ± 9.4 | 110.1 ± 3.3 |
| P3 | 0.24 ± 0.01 | 50.9 ± 5.9 | 113.3 ± 6.0 |
| P4 | 0.24 ± 0.00 | 48.4 ± 5.5 | 108.3 ± 2.3 |
| Surface Tension Parameters for Each Membrane (mJ/m2) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Membrane | γLW | γ+ | γ− | γAB | γTOT | |||||
| P1 | 34.50 ± 1.05 | 0.73 ± 0.23 | 1.64 ± 0.51 | 2.12 ± 0.14 | 36.63 ± 0.92 | |||||
| P2 | 37.66 ± 0.49 | 0.53 ± 0.07 | 8.57 ± 0.19 | 4.24 ± 0.33 | 41.90 ± 0.81 | |||||
| P3 | 39.77 ± 0.84 | 0.36 ± 0.19 | 11.75 ± 0.50 | 3.98 ± 1.04 | 43.75 ± 1.86 | |||||
| P4 | 38.07 ± 0.50 | 0.32 ± 0.12 | 6.90 ± 0.95 | 2.90 ± 0.31 | 40.97 ± 0.80 | |||||
| The Free Energy of Cohesion of Membranes (mJ/m2) | The Free Energy of Adhesion of Membranes (mJ/m2) | |||||||||
| Membrane | ΔGLW | ΔGAB | ΔGEL | ΔGTOT | ΔGLW | ΔGAB | ΔGEL | ΔGTOT | ||
| P1 | −2.91 ± 0.43 | −63.45 ± 1.70 | 0.19 ± 0.04 | −66.17 ± 2.01 | −3.12 ± 0.23 | −64.73 ± 0.65 | 0.08 ± 0.01 | −67.76 ± 0.85 | ||
| P2 | −4.31 ± 0.23 | −36.75 ± 0.97 | 0.25 ± 0.03 | −40.81 ± 0.71 | −3.80 ± 0.10 | −53.17 ± 0.65 | 0.10 ± 0.01 | −56.87 ± 0.55 | ||
| P3 | −6.24 ± 0.47 | −24.55 ± 1.50 | 0.27 ± 0.01 | −30.52 ± 1.13 | −4.57 ± 0.17 | −48.43 ± 1.34 | 0.10 ± 0.00 | −52.90 ± 1.17 | ||
| P4 | −4.51 ± 0.24 | −43.55 ± 2.29 | 0.24 ± 0.00 | −47.82 ± 2.52 | −3.88 ± 0.10 | −56.89 ± 0.53 | 0.09 ± 0.00 | −60.68 ± 0.63 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.; Bo, S.; Wang, C.; Xiong, Q.; Tan, B.; Jian, Z.; Xie, F.; Li, J.; Xiao, Z.; Liu, G. Preparation and Characterization of PVDF/PVPylated-TiO2 Composite Membrane with Enhanced Antifouling Performance. Nanomaterials 2026, 16, 104. https://doi.org/10.3390/nano16020104
Zhang J, Bo S, Wang C, Xiong Q, Tan B, Jian Z, Xie F, Li J, Xiao Z, Liu G. Preparation and Characterization of PVDF/PVPylated-TiO2 Composite Membrane with Enhanced Antifouling Performance. Nanomaterials. 2026; 16(2):104. https://doi.org/10.3390/nano16020104
Chicago/Turabian StyleZhang, Jie, Shiying Bo, Chunhua Wang, Qiancheng Xiong, Bingqiong Tan, Zicong Jian, Feiyan Xie, Jianpeng Li, Zicheng Xiao, and Guocong Liu. 2026. "Preparation and Characterization of PVDF/PVPylated-TiO2 Composite Membrane with Enhanced Antifouling Performance" Nanomaterials 16, no. 2: 104. https://doi.org/10.3390/nano16020104
APA StyleZhang, J., Bo, S., Wang, C., Xiong, Q., Tan, B., Jian, Z., Xie, F., Li, J., Xiao, Z., & Liu, G. (2026). Preparation and Characterization of PVDF/PVPylated-TiO2 Composite Membrane with Enhanced Antifouling Performance. Nanomaterials, 16(2), 104. https://doi.org/10.3390/nano16020104

