Silver Nanoclusters Decrease Bacterial Resistance to Heavy Metals and Antibiotics
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Silver Nanoclusters
2.2. Characteristics of Silver Nanoclusters
2.3. Bacterial Strains and Culture Conditions
2.4. Determination of the Toxicity of Silver Nanoclusters to Bacteria
2.5. Evaluation of the Effect of Silver Nanoclusters on Bacterial Resistance to Toxicants
2.6. Determination of the Concentration of Silver Nanoclusters Affecting Bacterial Resistance
3. Results
3.1. Preparation and Characterization of Silver Nanoclusters
3.2. Evaluation of the Antimicrobial Activity of Silver Nanoclusters
3.3. The Effect of Silver Nanoclusters on Bacterial Resistance to Heavy Metals and Antibiotics
3.4. Effect of Different Concentrations of Silver Nanoclusters on Bacterial Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AgNCs | Silver nanoclusters |
| DLS | Dynamic light scattering |
| EC50 | Half maximal effective concentration |
| ETM | Erythromycin |
| GSH | Glutathione |
| Lfx | Levofloxacin |
| MIC | Minimal inhibitory concentration |
| MTC | Minimal tolerable concentration |
| NPs | Nanoparticles |
| RND | “Resistance-nodulation-division”, the type of efflux pump systems |
| TEM | Transmission electron microscopy |
| LB | Lysogeny broth, rich nutrient medium |
References
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Darwish, M.A.; Abd-Elaziem, W.; Elsheikh, A.; Zayed, A.A. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv. 2024, 6, 4015–4046. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Viswanath, I.K.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-Dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022, 13, 41. [Google Scholar] [CrossRef]
- Al-Harbi, N.; Abd-Elrahman, N.K. Physical methods for preparation of nanomaterials, their characterization and applications: A review. J. Umm Al-Qura Univ. Appl. Sci. 2025, 11, 356–377. [Google Scholar] [CrossRef]
- Krukemeyer, M.G.; Krenn, V.; Huebner, F.; Wagner, W.; Resch, R. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. J. Nanomed. Nanotechnol. 2015, 6, 336. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, N.; Jha, D.; Roy, I.; Kumar, P.; Gaurav, S.S.; Marimuthu, K.; Ng, O.T.; Lakshminarayanan, R.; Verma, N.K.; Gautam, H.K. Nanobiotics against antimicrobial resistance: Harnessing the power of nanoscale materials and technologies. J. Nanobiotechnol. 2022, 20, 375. [Google Scholar] [CrossRef]
- Choudhary, K.; Dhania, N.K. Light-activated nanoweapons: aPDT and PTT strategies against persistent infections and biofilms. J. Drug Deliv. Sci. Technol. 2025, 115, 107676. [Google Scholar] [CrossRef]
- Jin, J.C.; Wu, X.J.; Xu, J.; Wang, B.B.; Jiang, F.L.; Liu, Y. Ultrasmall silver nanoclusters: Highly efficient antibacterial activity and their mechanisms. Biomater. Sci. 2017, 5, 247–257. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, M.; Wu, H.; Li, F.; Ling, D. Antibacterial metal nanoclusters. J. Nanobiotechnol. 2022, 20, 328. [Google Scholar] [CrossRef]
- Schmid, G.; Bäumle, M.; Geerkens, M.; Heim, I.; Osemann, C.; Sawitowski, T. Current and future applications of nanoclusters. Chem. Soc. Rev. 1999, 28, 179–185. [Google Scholar] [CrossRef]
- Wilcoxon, J.P.; Abrams, B.L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162–1194. [Google Scholar] [CrossRef] [PubMed]
- Díez, I.; Ras, R.H. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Song, X.; Chai, O.J.; Yao, Q.; Yang, H.; Xie, J. Photoluminescent characterization of metal nanoclusters: Basic parameters, methods, and applications. Adv. Mater. 2024, 36, 2401002. [Google Scholar] [CrossRef]
- Liu, X.; Ki, T.; Deng, G.; Yoo, S.; Lee, K.; Lee, B.H.; Hyeon, T.; Bootharaju, M.S. Recent advances in synthesis and properties of silver nanoclusters. Nanoscale 2024, 16, 12329–12344. [Google Scholar] [CrossRef]
- Díez, I.; Eronen, P.; Österberg, M.; Linder, M.B.; Ikkala, O.; Ras, R.H. Functionalization of nanofibrillated cellulose with silver nanoclusters: Fluorescence and antibacterial activity. Macromol. Biosci. 2011, 11, 1185–1191. [Google Scholar] [CrossRef]
- Javani, S.; Lorca, R.; Latorre, A.; Flors, C.; Cortajarena, A.L.; Somoza, Á. Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl. Mater. Interfaces 2016, 8, 10147–10154. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Fang, Y.; Zhu, Z. Boosting antibacterial activity with mesoporous silica nanoparticles supported silver nanoclusters. J. Colloid Interface Sci. 2019, 555, 470–479. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Peng, Y.; Yang, X. Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters. ACS Appl. Mater. Interfaces 2019, 11, 8461–8469. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, T.; Wang, C.; Liu, S.; Zhang, W.; Sun, J.; Yu, H.; Shi, H.; Song, Y. A hydrogel-functionalized silver nanocluster for bacterial-infected wound healing. Nanoscale 2024, 16, 10656–10662. [Google Scholar] [CrossRef]
- Tumskiy, R.; Khlebtsov, B.; Tumskaia, A.; Evstigneeva, S.; Antoshkina, E.; Zakharevich, A.; Khlebtsov, N.G. Enhanced antibacterial activity of novel fluorescent glutathione-capped Ag nanoclusters. Int. J. Mol. Sci. 2023, 24, 8306. [Google Scholar] [CrossRef]
- Yamasaki, S.; Zwama, M.; Yoneda, T.; Hayashi-Nishino, M.; Nishino, K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. Microbiology 2023, 169, 001322. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339. [Google Scholar] [CrossRef]
- Burygin, G.L.; Astankova, A.S.; Chumakov, D.S.; Kryuchkova, E.V. Effect of silver nanoclusters on the copper resistance of Achromobacter insolitus LCu2. Microbiology 2025, 94, 299–301. [Google Scholar] [CrossRef]
- Yuan, X.; Tay, Y.; Dou, X.; Luo, Z.; Leong, D.T.; Xie, J. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 2013, 85, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkova, Y.V.; Neshko, A.A.; Gogoleva, N.E.; Balkin, A.S.; Safronova, V.I.; Kargapolova, K.Y.; Shagimardanova, E.I.; Gogolev, Y.V.; Burygin, G.L. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2. Antonie Van Leeuwenhoek 2024, 117, 105. [Google Scholar] [CrossRef]
- Kryuchkova, Y.V.; Burygin, G.L.; Gogoleva, N.E.; Gogolev, Y.V.; Chernyshova, M.P.; Makarov, O.E.; Fedorov, E.E.; Turkovskaya, O.V. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol. Res. 2014, 169, 99–105. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res. 2019, 149, 129–145. [Google Scholar] [CrossRef]
- Ungor, D.; Barbasz, A.; Czyżowska, A.; Csapó, E.; Oćwieja, M. Cytotoxicity studies of protein-stabilized fluorescent gold nanoclusters on human lymphocytes. Colloids Surf. B Biointerfaces 2021, 100, e111593. [Google Scholar] [CrossRef]
- Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D.T.; Lee, J.Y.; Xie, J. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670. [Google Scholar] [CrossRef]
- Bondarczuk, K.; Piotrowska-Seget, Z. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol. Toxicol. 2013, 29, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.B.; Hou, W.T.; Cheng, M.T.; Jiang, Y.L.; Chen, Y.; Zhou, C.Z. Structure of a MacAB-like efflux pump from Streptococcus pneumoniae. Nat. Commun. 2018, 9, 196. [Google Scholar] [CrossRef]
- Henneman, A.; Thornby, K.A. Risk of hypotension with concomitant use of calcium-channel blockers and macrolide antibiotics. Am. J. Health Syst. Pharm. 2012, 69, 1038–1043. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Warren, M.S.; Lee, A.; Galazzo, J.; Fronko, R.; Lee, M.A.; Blais, J.; Cho, D.; Chamberland, S.; Renau, T.O.; et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy. Antimicrob. Agents Chemother. 2001, 45, 105–116. [Google Scholar] [CrossRef]
- Vargiu, A.V.; Ruggerone, P.; Opperman, T.J.; Nguyen, S.T.; Nikaido, H. Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob. Agents Chemother. 2014, 58, 6224–6234. [Google Scholar] [CrossRef]
- Sekyere, J.O.; Amoako, D.G. Carbonyl cyanide m-chlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to tigecycline in multidrug-resistant Enterobacteriaceae. Front. Microbiol. 2017, 8, 228. [Google Scholar] [CrossRef]
- Chevalier, J.; Atifi, S.; Eyraud, A.; Mahamoud, A.; Barbe, J.; Pagès, J.M. New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J. Med. Chem. 2001, 44, 4023–4026. [Google Scholar] [CrossRef] [PubMed]
- Zack, K.M.; Sorenson, T.; Joshi, S.G. Types and mechanisms of efflux pump systems and the potential of efflux pump inhibitors in the restoration of antimicrobial susceptibility, with a special reference to Acinetobacter baumannii. Pathogens 2024, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, J.; Fu, N.; Kornmatitsuk, B.; Yan, Z.; Luo, J. Phenylalanine-arginine β-naphthylamide could enhance neomycin-sensitivity on Riemerella anatipestifer in vitro and in vivo. Front. Microbiol. 2023, 13, 985789. [Google Scholar] [CrossRef]
- Nielsen, S.M.; Meyer, R.L.; Nørskov-Lauritsen, N. Differences in gene expression profiles between early and late isolates in monospecies Achromobacter biofilm. Pathogens 2017, 6, 20. [Google Scholar] [CrossRef]
- Rensing, C.; Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 2003, 27, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Montes, G.; Argüello, J.M.; Valderrama, B. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC Microbiol. 2012, 12, 249. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.Z.; Rafatullah, M.; Hossain, K.; Ismail, N.; Tajarudin, H.A.; Abdul Khalil, H.P. A review on mechanism and future perspectives of cadmium-resistant bacteria. Int. J. Environ. Sci. Technol. 2018, 15, 243–262. [Google Scholar] [CrossRef]










| Strains | Metrics | Cu2+, mM | Cd2+, mM | Erythromycin, μg/mL | Levofloxacin, μg/mL |
|---|---|---|---|---|---|
| Escherichia coli K12 | MIC | 3.0 | 0.08 | 2.5 | 0.7 |
| EC50 | 0.8 | n.d. * | 0.36 | 0.25 | |
| Staphylococcus aureus ATCC 25923 | MIC | 2.5 | 0.08 | 1.5 | 0.7 |
| EC50 | 0.75 | n.d. | 0.6 | 0.35 | |
| Pseudomonas aeruginosa ATCC 9027 | MIC | 3.0 | 0.2 | 0.6 | 0.7 |
| EC50 | 1.0 | 0.07 | 0.15 | 0.32 | |
| Achromobacter insolitus LCu2 | MIC | 2.0 | 0.61 | >10 | 2.0 |
| EC50 | 0.8 | 0.18 | 7 | 1.1 | |
| Enterobacter cloacae K7 | MIC | 3.0 | 0.76 | >10 | 0.8 |
| EC50 | 1.75 | 0.39 | 8 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Burygin, G.L.; Chumakov, D.S.; Astankova, A.S.; Filip’echeva, Y.A.; Balabanova, J.A.; Kryuchkova, Y.V. Silver Nanoclusters Decrease Bacterial Resistance to Heavy Metals and Antibiotics. Nanomaterials 2026, 16, 54. https://doi.org/10.3390/nano16010054
Burygin GL, Chumakov DS, Astankova AS, Filip’echeva YA, Balabanova JA, Kryuchkova YV. Silver Nanoclusters Decrease Bacterial Resistance to Heavy Metals and Antibiotics. Nanomaterials. 2026; 16(1):54. https://doi.org/10.3390/nano16010054
Chicago/Turabian StyleBurygin, Gennady L., Daniil S. Chumakov, Anastasia S. Astankova, Yulia A. Filip’echeva, Julia A. Balabanova, and Yelena V. Kryuchkova. 2026. "Silver Nanoclusters Decrease Bacterial Resistance to Heavy Metals and Antibiotics" Nanomaterials 16, no. 1: 54. https://doi.org/10.3390/nano16010054
APA StyleBurygin, G. L., Chumakov, D. S., Astankova, A. S., Filip’echeva, Y. A., Balabanova, J. A., & Kryuchkova, Y. V. (2026). Silver Nanoclusters Decrease Bacterial Resistance to Heavy Metals and Antibiotics. Nanomaterials, 16(1), 54. https://doi.org/10.3390/nano16010054

