Controlled One-Step Synthesis of Monodisperse CeO2 Octahedra in a Binary Solvent System with Waste Liquid Recycling
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CeO2 via One-Step Solvothermal Method
2.3. Characterization
3. Results and Discussion
3.1. Effect of Solvent Type and Binary Solvent System on Phase and Morphology
3.2. Effect of MeOH/H2O Ratio on Phase and Morphology
3.3. Effect of Solvothermal Duration on Crystallinity and Morphology
3.4. Recycling and Reuse of Solvothermal Mother Liquor
3.5. Mechanism Discussion
3.5.1. Formation Mechanism of CeO2
3.5.2. Mechanism of Impurity Formation During Solvent Recycling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Yang, X.; Chen, J.; Shen, B. The removal of toluene by thermoscatalytic oxidation using CeO2-based catalysts: A review. Chemosphere 2024, 351, 141253. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Fan, L.; Akbar, M.; Gao, J.; Wang, B.; Xia, C.; Singh, M.; Chiu, T.W. Superionic conduction of self-assembled heterostructural LSCrF-CeO2 electrolyte for solid oxide fuel cell at 375–550 °C. Appl. Surf. Sci. 2024, 645, 158832. [Google Scholar] [CrossRef]
- Bi, X.; Westerhoff, P. Adsorption of III/V ions (In (III), Ga (III) and As (V)) onto SiO2, CeO2 and Al2O3 nanoparticles used in the semiconductor industry. Environ. Sci. Nano 2016, 3, 1014–1026. [Google Scholar] [CrossRef]
- Aboelfetoh, E.F.; Rabea, M.F.; El-Sheikh, M.Y.; Okba, E.A. In situ polymerization of acrylamide on magnetic SnFe2O4/CeO2 nanocomposite: A novel adsorbent for removing various dyes. J. Mol. Struct. 2024, 1312, 138566. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.H.; Meng, X.Z.; Yan, H.J.; Hu, H.S.; Wu, L.K.; Cao, F.H. Active/passive protection and anti-UV waterborne epoxy coatings based on low defect functionalized PDA-GO-CeO2 material for excellent corrosion control. Chem. Eng. J. 2024, 479, 147859. [Google Scholar] [CrossRef]
- Wu, G.; Xie, T.; Yuan, X.; Cheng, B.; Zhang, L. An improved sol-gel template synthetic route to large-scale CeO2 nanowires. Mater. Res. Bull. 2004, 39, 1023–1028. [Google Scholar] [CrossRef]
- Fang, S.; Xin, Y.; Ge, L.; Han, C.; Qiu, P.; Wu, L. Facile synthesis of CeO2 hollow structures with controllable morphology by template-engaged etching of Cu2O and their visible light photocatalytic performance. Appl. Catal. B Environ. 2015, 179, 458–467. [Google Scholar] [CrossRef]
- Ying, F.; Wang, S.; Au, C.T.; Lai, S.Y. Highly active and stable mesoporous Au/CeO2 catalysts prepared from MCM-48 hard-template. Micropor. Mesopor. Mater. 2011, 142, 308–315. [Google Scholar] [CrossRef]
- Song, X.; Qu, P.; Jiang, N.; Yang, H.; Qiu, G. Synthesis and characterization of MCM-41 materials assembled with CeO2 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313, 193–196. [Google Scholar] [CrossRef]
- Djinović, P.; Batista, J.; Pintar, A. WGS reaction over nanostructured CuO-CeO2 catalysts prepared by hard template method: Characterization, activity and deactivation. Catal. Today 2009, 147, S191–S197. [Google Scholar] [CrossRef]
- Lolli, A.; Amadori, R.; Lucarelli, C.; Cutrufello, M.G.; Rombi, E.; Cavani, F.; Albonetti, S. Hard-template preparation of Au/CeO2 mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Micropor. Mesopor. Mater. 2016, 226, 466–475. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, X.; Li, W. Nanocast Ordered Mesoporous CeO2 as Support for Highly Active Gold Catalyst in CO Oxidation. Chin. J. Catal. 2009, 30, 1085–1090. [Google Scholar] [CrossRef]
- Cheng, T.; Fang, Z.; Hu, Q.; Han, K.; Zhang, Y. Preparation of CeO2 nanoparticles by using mesoporous active carbon as template. Asian J. Chem. 2007, 19, 2225–2228. [Google Scholar]
- Yang, Z.; Shen, Y.; Li, L.; Li, Z.; Wang, X.; Lu, X. In Situ Template-Synthesis of Hollow CeO2 Nanobeads in scCO2 with Improved Catalytic Activity Towards CO Oxidation. J. Nanosci. Nanotechnol. 2018, 18, 2068. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.; Narayan, A.; Bramhecha, I.; Sheikh, J. Development of multifunctional linen fabric using chitosan film as a template for immobilization of in-situ generated CeO2 nanoparticles. Int. J. Biol. Macromol. 2019, 121, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hu, Y.H.; Huang, J.G.; Liu, Z.G.; Wang, M.T. Study on the synthesis of CeO2 particles with spherical morphology by the control of CTAB. Chin. Rare Earths 2016, 37, 110–116. [Google Scholar] [CrossRef]
- Mitchell, S.L.; Guzman, J. Synthesis and characterization of nanocrystalline and mesostructured CeO2: Influence of the amino acid template. Mater. Chem. Phys. 2009, 114, 462–466. [Google Scholar] [CrossRef]
- Shishmakov, A.B.; Mikushina, Y.V.; Koryakova, O.V. Synthesis of CeO2 and CeO2/C Using Powdered Cellulose and Powdered Cellulose-Sucrose as a Template. Russ. J. Inorg. Chem. 2023, 68, 795–803. [Google Scholar] [CrossRef]
- Ruhaimi, A.H.; Aziz, M.A.A. Spherical CeO2 nanoparticles prepared using an egg-shell membrane as a bio-template for high CO2 adsorption. Chem. Phys. Lett. 2021, 779, 138842. [Google Scholar] [CrossRef]
- Schneider, J.J.; Naumann, M.; Schäfer, C.; Brandner, A.; Hofmann, H.J.; Claus, P. Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol. Beilstein J. Nanotechnol. 2011, 2, 776–784. [Google Scholar] [CrossRef]
- Junais, P.M.; Athika, M.; Govindaraj, G.; Elumalai, P. Supercapattery performances of nanostructured cerium oxide synthesized using polymer soft-template. J. Energy Storage 2020, 28, 101241. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D. Preparation and performance of CeO2 hollow spheres and nanoparticles. J. Rare Earth 2016, 34, 295–299. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Z.; Chen, X.; Liu, S.; Duan, C.; Xi, H. Water-based synthesis of nanoscale hierarchical metal-organic frameworks:boosting adsorption and catalytic performance. Nano Mater. Sci. 2023, 5, 361–368. [Google Scholar] [CrossRef]
- Xu, Y.; Li, R. Template-free synthesis of mesoporous CeO2 powders by integrating bottom-up and top-down routes for acid orange 7 adsorption. Rsc Adv. 2015, 5, 44828–44834. [Google Scholar] [CrossRef]
- Guan, Y.; Hensen, E.J.M.; Liu, Y.; Zhang, H.; Feng, Z.; Li, C. Template-free synthesis of sphere, rod and prism morphologies of CeO2 oxidation catalysts. Catal. Lett. 2010, 137, 28–34. [Google Scholar] [CrossRef]
- Yu, X.F.; Liu, J.W.; Cong, H.P.; Xue, L.; Arshad, M.N.; Albar, H.A.; Sobahi, T.R.; Gao, Q.; Yu, S.H. Template- and surfactant-free synthesis of ultrathin CeO2 nanowires in a mixed solvent and their superior adsorption capability for water treatment. Chem. Sci. 2015, 6, 2511–2515. [Google Scholar] [CrossRef]
- Tang, W.; Li, W.; Shan, X.; Wu, X.; Chen, Y. Template-free synthesis of hierarchical layer-stacking CeO2 nanostructure with enhanced catalytic oxidation activity. Mater. Lett. 2015, 140, 95–98. [Google Scholar] [CrossRef]
- Chen, J.F.; Yi, H. Self-assembly of flower-like CeO2 microspheres via a template-free synthetic approach and its use as support in enhanced co and benzene oxidation activity. Adv. Mater. Res. 2011, 308, 656–661. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, D.; Shi, L.; Fang, J. Template-Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO2 Nanorods, Nanotubes, Nanowires, and Nanocubes. Eur. J. Inorg. Chem. 2010, 2008, 2429–2436. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212. [Google Scholar] [CrossRef]
- Mai, H.X.; Sun, L.D.; Zhang, Y.W.; Si, R.; Feng, W.; Zhang, H.P.; Liu, H.C.; Yan, C.H. Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, F.; Xiao, P.; Tao, H.; Wang, X.; Hu, Z.; Lu, Y. Great Influence of Anions for Controllable Synthesis of CeO2 Nanostructures: From Nanorods to Nanocubes. J. Phys. Chem. C 2008, 112, 17076–17080. [Google Scholar] [CrossRef]
- Xu, Y.; Li, R. Wet-chemical synthesis and characterization of nitrogen-doped CeO2 powders for oxygen storage capacity. Appl. Surf. Sci. 2018, 455, 997–1004. [Google Scholar] [CrossRef]
- Yan, L.; Yu, R.; Chen, J.; Xing, X. Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution. Cryst. Growth Des. 2008, 8, 1474–1477. [Google Scholar] [CrossRef]
- Fan, T.; Zhang, L.; Jiu, H.; Sun, Y.; Liu, G.; Sun, Y.; Su, Q. Template-free hydrothermal synthesis and characterisation of single crystalline Ce(OH)CO3 and CeO2 with spindle-like structures. Micro Nano Lett. 2010, 5, 230–233. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, C.; Qin, H.; Wang, Y.; Li, Y.; Li, X.; Zuo, Y.; Kang, S.; Cui, L. A urea-assisted template method to synthesize mesoporous N-doped CeO2 for CO2 capture. Dalton Trans. 2015, 44, 18718–18722. [Google Scholar] [CrossRef]
- Anzorena, R.S.; Muñoz, F.F.; Bonelli, P.; Cukierman, A.L.; Larrondo, S.A. Hierarchical, template-free self-assembly morphologies IN CeO2 synthesized via urea-hydrothermal method. Ceram. Int. 2020, 46, 11776–11785. [Google Scholar] [CrossRef]
- Ikim, M.I.; Gerasimov, G.N.; Gromov, V.F.; Ilegbusi, O.J.; Trakhtenberg, L.I. Phase composition, conductivity, and sensor properties of cerium-doped indium oxide. Nano Mater. Sci. 2024, 6, 193–200. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhou, W.; Yang, B.; Liao, C.; Kang, Q.; Chen, G.; Liu, M.; Liu, X.; Ma, R.; Zhang, N. Tuned d-band states over lanthanum doped nickel oxide for efficient oxygen evolution reaction. Nano Mater. Sci. 2023, 5, 228–236. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, X.; Chen, Y.; Shen, J.; Huang, J.; Chen, Y.; Duan, X.; Han, Y.; Chan, K.W.Y.; Lu, J. A hierarchical salt-rejection strategy for sustainable and high-efficiency solar-driven desalination. Nano Mater. Sci. 2024, 6, 38–43. [Google Scholar] [CrossRef]
- Mikheeva, N.N.; Zaikovskii, V.I.; Mamontov, G.V. The effect of Ag and CeO2 distribution on SBA-15 surface on the activity of Ag-CeO2/SBA-15 catalysts in CO and methanol oxidation. J. Sol Gel Sci. Technol. 2019, 92, 398–407. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Feng, Z.; Sun, D.; Wang, T.; Li, R.; Xu, Y. Solvothermal synthesis and characterization of ceria with solid and hollow spherical and multilayered morphologies. Appl. Surf. Sci. 2014, 322, 147–154. [Google Scholar] [CrossRef]








| Experiment Type | Solvent Composition | Total Volume (mL) | Ce(NO3)3·6H2O | Conditions |
|---|---|---|---|---|
| Pure Organic Solvent Systems | 20 mL MeOH | 20 | 4 mmol | 180 °C, 12 h |
| 20 mL EtOH | 20 | 4 mmol | 180 °C, 12 h | |
| 20 mL n-PrOH | 20 | 4 mmol | 180 °C, 12 h | |
| 20 mL i-PrOH | 20 | 4 mmol | 180 °C, 12 h | |
| Binary Solvent Systems | 15 mL MeOH + 5 mL H2O | 20 | 4 mmol | 180 °C, 12 h |
| 15 mL EtOH + 5 mL H2O | 20 | 4 mmol | 180 °C, 12 h | |
| 15 mL n-PrOH + 5 mL H2O | 20 | 4 mmol | 180 °C, 12 h | |
| 15 mL i-PrOH + 5 mL H2O | 20 | 4 mmol | 180 °C, 12 h | |
| MeOH/H2O Ratio Study | 5 mL MeOH + 15 mL H2O | 20 | 4 mmol | 180 °C, 12 h |
| 10 mL MeOH + 10 mL H2O | 20 | 4 mmol | 180 °C, 12 h | |
| 15 mL MeOH + 5 mL H2O | 20 | 4 mmol | 180 °C, 12 h | |
| MeOH/H2O Volume Study | 20 mL MeOH + 5 mL H2O | 25 | 4 mmol | 180 °C, 12 h |
| 25 mL MeOH + 5 mL H2O | 30 | 4 mmol | 180 °C, 12 h | |
| Recycling Study | Recovered mother liquor (Initial: 15 mL MeOH + 5 mL H2O) | 20 | 4 mmol per cycle | 180 °C, 12 h per cycle |
| Solvent System | Crystallite Size (nm) | Relative Crystallinity (%) | Particle Size Range (μm) | Dominant Morphology (from SEM) |
|---|---|---|---|---|
| Pure Alcohols (20 mL) | ||||
| MeOH | 6.7 | 41.2 | ~1.9 (Diameter) | Irregular spherical aggregates |
| EtOH | 6.9 | 49.2 | ~2.1 (Diameter) | Irregular spherical aggregates |
| n-PrOH | 7.2 | 48.3 | ~2.2 (Diameter) | Irregular spherical aggregates |
| i-PrOH | 9.0 | 60.3 | ~2.3 (Diameter) | Irregular spherical aggregates |
| Binary Solvents (15 mL alcohol/5 mL H2O) | ||||
| MeOH/H2O | 11.8 | 62.7 | ~1.3/1.7 (Edge length) | Well-defined octahedra |
| EtOH/H2O | 10.8 | 57.0 | ~1.8 (Diameter) | Irregular spherical aggregates |
| n-PrOH/H2O | 9.5 | 59.2 | ~1.4 (Diameter) | Irregular spherical aggregates |
| i-PrOH/H2O | 12.8 | 61.1 | ~2.8 (Diameter) | Irregular spherical aggregates |
| MeOH/H2O (mL/mL) | Total Volume (mL) | Crystallite Size (nm) | Relative Crystallinity (%) | Particle Size Range (μm) | Dominant Morphology (from SEM) |
|---|---|---|---|---|---|
| 5/15 | 20 | 13.2 | 61.9 | ~1.6 (Edge length) | Nano-octahedra aggregates |
| 10/10 | 20 | 16.4 | 63.5 | ~2.5 (Diameter) | Nano-octahedra aggregates |
| 20/5 | 25 | 13.4 | 63.0 | ~14.6 (Diameter) | Octahedra with degraded edges |
| 25/5 | 30 | 11.3 | 55.9 | ~2.7 (Edge length)/~4.4 (Diameter) | Octahedra with degraded edges |
| Condition | Variable | Crystallite Size (nm) | Relative Crystallinity (%) | Particle Size Range (μm) | Dominant Morphology (from SEM) |
|---|---|---|---|---|---|
| Reaction Time | 1 h | / | / | ~38 (Diameter) | Initial nanoplate aggregates |
| 3 h | 13.5 | 62.3 | ~1.0 (Edge length)/~0.8 (Diameter) | Nano- and micro-sized octahedra | |
| 6 h | 12.4 | 62.6 | ~1.3 (Edge length)/~1.7 (Diameter) | Growth of micro-octahedra | |
| 12 h | 11.8 | 62.7 | ~1.3/2.1 (Edge length) | Well-faceted micro-octahedra | |
| 24 h | 16.6 | 65.4 | ~2.3 (Edge length) | Larger octahedra | |
| 36 h | 12.9 | 63.7 | ~3.0 (Diameter) | Surface pitting, onset of dissolution | |
| Recycling Cycle | Cycles 1–4 | 12.4/13.7/12.8/15.7 | 65.3/64.2/65.6/65.8 | ~1.7/2.1 1.9/2.5 (Diameter) | Uniform micron-sized octahedra |
| Cycles 5–7 | / | / | / | Appearance of prismatic/nanoparticles | |
| Cycles 8 | / | / | / | Angular to spherical aggregates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Y.; Hu, Y.; Zeng, N.; Wang, H.; Zhang, Y.; Liu, Z.; Chen, X.; Ding, Z. Controlled One-Step Synthesis of Monodisperse CeO2 Octahedra in a Binary Solvent System with Waste Liquid Recycling. Nanomaterials 2026, 16, 53. https://doi.org/10.3390/nano16010053
Xu Y, Hu Y, Zeng N, Wang H, Zhang Y, Liu Z, Chen X, Ding Z. Controlled One-Step Synthesis of Monodisperse CeO2 Octahedra in a Binary Solvent System with Waste Liquid Recycling. Nanomaterials. 2026; 16(1):53. https://doi.org/10.3390/nano16010053
Chicago/Turabian StyleXu, Yaohui, Yu Hu, Nengwei Zeng, Haimei Wang, Yuan Zhang, Zongjie Liu, Xinrui Chen, and Zhao Ding. 2026. "Controlled One-Step Synthesis of Monodisperse CeO2 Octahedra in a Binary Solvent System with Waste Liquid Recycling" Nanomaterials 16, no. 1: 53. https://doi.org/10.3390/nano16010053
APA StyleXu, Y., Hu, Y., Zeng, N., Wang, H., Zhang, Y., Liu, Z., Chen, X., & Ding, Z. (2026). Controlled One-Step Synthesis of Monodisperse CeO2 Octahedra in a Binary Solvent System with Waste Liquid Recycling. Nanomaterials, 16(1), 53. https://doi.org/10.3390/nano16010053

