Photocatalytic CO2 Reduction over Cotton-like Blue C/TiO2 Nanotubes: Enhanced Performance via Structural Engineering
Abstract
1. Introduction
2. Experimental
2.1. Chemical Materials
2.2. Synthesis of the MIL-125(Ti)
2.3. Synthesis of the C/TiO2
2.4. Synthesis of the C/TiO2 NTs
2.5. Structural Characterization
2.6. Photocatalytic Reduction Reaction of CO2
3. Results and Discussion
3.1. The Structure and Morphology
3.2. The Performances of Photocatalytic Reduction of Carbon Dioxide
3.3. The Mechanism of Photocatalytic CO2 Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Adv. Mater. 2014, 26, 4607–4626. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Jaroniec, M.; Qiao, S.-Z. Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Adv. Mater. 2018, 30, 1704649. [Google Scholar] [CrossRef]
- Thornton, P.E.; Doney, S.C.; Lindsay, K.; Moore, J.K.; Mahowald, N.; Randerson, J.T.; Fung, I.; Lamarque, J.-F.; Feddema, J.J.; Lee, Y.-H. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: Results from an atmosphere-ocean general circulation model. Biogeosciences 2009, 6, 2099–2120. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, Y.; Al-Enizi, A.M.; Zheng, G. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts. Small 2017, 13, 1701809. [Google Scholar] [CrossRef]
- Kamkeng, A.D.N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2020, 409, 128138. [Google Scholar] [CrossRef]
- Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A. Utilisation of CO2 as a chemical feedstock: Opportunities and challenges. Dalton Trans. 2007, 2975–2992. [Google Scholar] [CrossRef]
- Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81. [Google Scholar] [CrossRef]
- Riduan, S.N.; Zhang, Y. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans. 2010, 39, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hu, J.; Zheng, S.; Fan, Y.; Li, H.; Zhang, S.; Liu, W.; Zha, B.; Huo, F.; Saleem, F. Recent Progress in Surface and Interface Engineering for Electrocatalytic CO2 Reduction. Chem. Asian J. 2022, 17, e202200990. [Google Scholar] [CrossRef]
- Qiu, L.; Shen, S.; Ma, C.; Lv, C.; Guo, X.; Jiang, H.; Liu, Z.; Qiao, W.; Ling, L.; Wang, J. Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction. Chem. Eng. J. 2022, 440, 135956. [Google Scholar] [CrossRef]
- Yu, S.; Wilson, A.J.; Kumari, G.; Zhang, X.; Jain, P.K. Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Lett. 2017, 2, 2058–2070. [Google Scholar] [CrossRef]
- Sahara, G.; Ishitani, O. Efficient Photocatalysts for CO2 Reduction. Inorg. Chem. 2015, 54, 5096–5104. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Huang, H.; Shi, R.; Li, Z.; Zhao, J.; Su, C.; Zhang, T. Triphase Photocatalytic CO2 Reduction over Silver-Decorated Titanium Oxide at a Gas-Water Boundary. Angew. Chem. Int. Ed. 2022, 61, e202200802. [Google Scholar] [CrossRef]
- Ma, X.; Li, D.; Xie, J.; Qi, J.; Jin, H.; Bai, L.; Zhang, H.; You, F.; Yuan, F. Confined Space and Heterojunction Dual Modulation of ZnO/ZnS for Boosting Photocatalytic CO2 Reduction. Sol. RRL 2023, 7, 2201093. [Google Scholar] [CrossRef]
- Jia, Y.; Tian, Z.; Gao, J. An effective integrated Cu2O photocathode to boost photoelectrocatalytic CO2 conversion. J. Mater. Chem. A 2023, 11, 11411–11425. [Google Scholar] [CrossRef]
- Cao, H.; Xue, J.; Wang, Z.; Dong, J.; Li, W.; Wang, R.; Sun, S.; Gao, C.; Tan, Y.; Zhu, X. Construction of atomically dispersed Cu sites and S vacancies on CdS for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2021, 9, 16339–16344. [Google Scholar] [CrossRef]
- Yin, Y.; Jing, W.; Wang, F.; Liu, Y.; Guo, L. Electro-reduced copper on polymeric C3N4 for photocatalytic reduction of CO2. Carbon 2023, 214, 118317. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Q. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033. [Google Scholar] [CrossRef]
- Qin, X.; Xu, M.; Guan, J.; Feng, L.; Xu, Y.; Zheng, L.; Wang, M.; Zhao, J.-W.; Chen, J.-L.; Zhang, J. Direct conversion of CO and H2O to hydrocarbons at atmospheric pressure using a TiO2−x/Ni photothermal catalyst. Nat. Energy 2024, 9, 154–162. [Google Scholar] [CrossRef]
- Wang, J.; Guo, R.-T.; Bi, Z.-X.; Chen, X.; Hu, X.; Pan, W.G. A review on TiO2−x-based materials for photocatalytic CO2 reduction. Nanoscale 2022, 14, 11512–11528. [Google Scholar] [CrossRef]
- Jing, Y.; Yin, X.; Li, L. Modification strategies of TiO2-based nanocatalysts for CO2 reduction through photocatalysis: A mini review. Appl. Catal. A Gen. 2025, 691, 120054. [Google Scholar] [CrossRef]
- Liccardo, L.; Bordin, M.; Sheverdyaeva, P.M.; Belli, M.; Moras, P.; Vomiero, A.; Moretti, E. Surface Defect Engineering in Colored TiO2 Hollow Spheres Toward Efficient Photocatalysis. Adv. Funct. Mater. 2023, 33, 2212486. [Google Scholar] [CrossRef]
- Reñones, P.; Fresno, F.; Oropeza, F.E.; Gorni, G. Structural and electronic insight into the effect of indium doping on the photocatalytic performance of TiO2 for CO2 conversion. J. Mater. Chem. A 2021, 10, 6054–6064. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, F.; Lei, S.; Wei, Y.; Zhao, D.; Gao, Y.; Ma, X.; Li, S.; Chang, S.; Wang, M. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem. Eng. J. 2022, 452, 139392. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, C.; Chen, S.; Liu, H.; Peng, T. Insight into the significantly enhanced photocatalytic CO2 reduction performance of Pt/MnO dual cocatalysts on sea-urchin-like anatase TiO2 microspheres. Chem. Eng. J. 2021, 425, 131627. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Ali, A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2018, 26, 3262–3291. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, X.; Liu, X.; Qin, W.; Wang, M.; Pan, L. Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. J. Alloys Compd. 2017, 690, 640–646. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Z.; Du, K.; Lai, Y.; Fang, J.; Li, J. Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries. J. Power Sources 2016, 330, 1–6. [Google Scholar] [CrossRef]
- Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857–10859. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lv, T.; Xiao, B.; Liu, B.; Zhou, T.; Zhang, J.; Zhang, Y.; Zhang, G.; Liu, Q. Research progress of MIL-125 and its modifications in photocatalytic hydrogen evolution. J. Mater. Chem. C 2023, 11, 6800–6818. [Google Scholar] [CrossRef]
- Zhai, G.; Zhou, J.; Xie, M.; Jia, C.; Hu, Z.; Xiang, H.; Zhu, M. Lignin-Derived Carbon Nanofibers Loaded with TiO2 Enables Efficient Photocatalysis. Adv. Sustain. Syst. 2023, 7, 2200459. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, N.; Zhou, T.; Zhan, W.; Zhao, J.; Chen, M.; He, T.; Zhang, J.; Zhang, Y.; Zhang, G. Mechanism and performance of photocatalytic H2 evolution for carbon self-doped TiO2 derived from MIL-125. Int. J. Hydrogen Energy 2024, 65, 151–157. [Google Scholar] [CrossRef]
- Chen, X.; Peng, X.; Jiang, L.; Yuan, X.; Fei, J.; Zhang, W. Photocatalytic removal of antibiotics by MOF-derived Ti3+- and oxygen vacancy-doped anatase/rutile TiO2 distributed in a carbon matrix. Chem. Eng. J. 2022, 427, 130945. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, W.; Yang, Z.; Zhang, M.; Guan, Z.; Yang, J. Photocatalytic CO2 Reduction over Cotton-like Blue C/TiO2 Nanotubes: Enhanced Performance via Structural Engineering. Nanomaterials 2026, 16, 35. https://doi.org/10.3390/nano16010035
Wu W, Yang Z, Zhang M, Guan Z, Yang J. Photocatalytic CO2 Reduction over Cotton-like Blue C/TiO2 Nanotubes: Enhanced Performance via Structural Engineering. Nanomaterials. 2026; 16(1):35. https://doi.org/10.3390/nano16010035
Chicago/Turabian StyleWu, Wenjing, Zichao Yang, Min Zhang, Zhongjie Guan, and Jianjun Yang. 2026. "Photocatalytic CO2 Reduction over Cotton-like Blue C/TiO2 Nanotubes: Enhanced Performance via Structural Engineering" Nanomaterials 16, no. 1: 35. https://doi.org/10.3390/nano16010035
APA StyleWu, W., Yang, Z., Zhang, M., Guan, Z., & Yang, J. (2026). Photocatalytic CO2 Reduction over Cotton-like Blue C/TiO2 Nanotubes: Enhanced Performance via Structural Engineering. Nanomaterials, 16(1), 35. https://doi.org/10.3390/nano16010035

