Remote Plasma Selective Silicon Etching Enabled Tunable Sub-Fin Process for Improved Parasitic Bottom Channel Control in Gate-All-Around Nanosheet Field-Effect Transistors
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. A Novel Method for Si Selective Etching
3.2. A Novel Method for Sub-Fin Shape Edit
- After achieving the predefined pattern size scaling using multiple patterning technology, an anisotropic etching process is first employed to etch the fins, with the etch depth corresponding to the thickness of the Si/SiGe multilayer stack.
- Immediately following this, a passivation treatment or a thin-film deposition process is utilized to form a protective layer on the sidewalls of the Si/SiGe multilayer fin structure to ensure the successful execution of subsequent steps.
- Subsequently, the anisotropic etching process is continued to further deepen the fin etch, forming shallow trenches intended for filling with dielectric material.
- Finally, and most critically, a Si-selective etching process is employed to precisely and laterally remove the Si material in the Sub-Fin region beneath the Si/SiGe multilayer fin structure. This step effectively narrows the width of the Sub-Fin, where a parasitic bottom channel could potentially form, thereby significantly mitigating its negative impact on device performance.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.-H.; Linten, D.; Hellings, G.; Veloso, A.; Scholz, M.; Boschke, R.; Groeseneken, G.; Collaert, N.; Thean, A. ESD characterization of gate-all-around (GAA) Si nanowire devices. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 14.4.1–14.4.4. [Google Scholar]
- Hashemi, P.; Teherani, J.T.; Hoyt, J.L. Investigation of hole mobility in gate-all-around Si nanowire p-MOSFETs with high-κ/metal-gate: Effects of hydrogen thermal annealing and nanowire shape. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 34.5.1–34.5.4. [Google Scholar]
- Rozeau, O.; Martinie, S.; Poiroux, T.; Triozon, F.; Barraud, S.; Lacord, J.; Niquet, Y.M.; Tabone, C.; Coquand, R.; Augendre, E.; et al. NSP: Physical compact model for stacked-planar and vertical Gate-All-Around MOSFETs. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 7.5.1–7.5.4. [Google Scholar]
- Mertens, H.; Ritzenthaler, R.; Chasin, A.; Schram, T.; Kunnen, E.; Hikavyy, A.; Ragnarsson, L.-Å.; Dekkers, H.; Hopf, T.; Wostyn, K.; et al. Vertically stacked gate-all-around Si nanowire CMOS transistors with dual work function metal gates. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 19.7.1–19.7.4. [Google Scholar]
- Mertens, H.; Ritzenthaler, R.; Pena, V.; Santoro, G.; Kenis, K.; Schulze, A.; Litta, E.D.; Chew, S.A.; Devriendt, K.; Chiarella, R.; et al. Vertically stacked gate-all-around Si nanowire transistors: Key Process Optimizations and Ring Oscillator Demonstration. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 37.4.1–37.4.4. [Google Scholar]
- Yang, X.; Li, Y.; Xie, X.; Zhang, S.; Shen, Z.; Zhou, F.; He, X.; Zhao, J.; Mao, G.; Wang, A.; et al. Analysis of short channel effects for 14nm and beyond Si-bulk FinFET. In Proceedings of the 2016 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 13–14 March 2016; pp. 1–3. [Google Scholar]
- Asif, R.M.; Rehman, S.U.; Rehman, A.U.; Bajaj, M.; Choudhury, S.; Dash, T.P. A Comparative Study of Short Channel Effects in 3-D FinFET with High-K Gate Dielectric. In Proceedings of the 2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT), Bhubaneswar, India, 9–11 October 2021; pp. 1–5. [Google Scholar]
- Zhang, J.; Ando, T.; Yeung, C.W.; Wang, M.; Kwon, O.; Galatage, R.; Chao, R.; Loubet, N.; Moon, B.K.; Bao, R.; et al. High-k metal gate fundamental learning and multi-Vt options for stacked nanosheet gate-all-around transistor. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 22.1.1–22.1.4. [Google Scholar]
- Fan, J.; Li, M.; Xu, X.; Yang, Y.; Xuan, H.; Huang, R. Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors. IEEE Trans. Electron Devices 2015, 62, 213–219. [Google Scholar]
- Yao, J.; Li, J.; Luo, K.; Yu, J.; Zhang, Q.; Hou, Z.; Gu, J.; Yang, W.; Wu, Z.; Ying, H.; et al. Physical Insights on Quantum Confinement and Carrier Mobility in Si, Si0.45Ge0.55, Ge Gate-All-Around NSFET for 5 nm Technology Node. IEEE J. Electron Devices Soc. 2018, 6, 841–848. [Google Scholar] [CrossRef]
- Liao, Y.-B.; Chiang, M.-H.; Lai, Y.-S.; Hsu, W.-C. Stack Gate Technique for Dopingless Bulk FinFETs. IEEE Trans. Electron Devices 2014, 61, 963–968. [Google Scholar] [CrossRef]
- Lin, C.-H.; Greene, B.; Narasimha, S.; Cai, J.; Bryant, A.; Radens, C.; Narayanan, V.; Linder, B.; Ho, H.; Aiyar, A.; et al. High performance 14nm SOI FinFET CMOS technology with 0.0174 µm2 embedded DRAM and 15 levels of Cu metallization. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 3.8.1–3.8.3. [Google Scholar]
- Ha, D.; Yang, C.; Lee, J.; Lee, S.; Lee, S.H.; Seo, K.-I.; Oh, H.S.; Hwang, E.C.; Do, S.W.; Park, S.C.; et al. Highly manufacturable 7nm FinFET technology featuring EUV lithography for low power and high performance applications. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T68–T69. [Google Scholar]
- Zhang, J.; Frougier, J.; Greene, A.; Miao, X.; Yu, L.; Vega, R.; Montanini, P.; Durfee, C.; Gaul, A.; Pancharatnam, S.; et al. Full Bottom Dielectric Isolation to Enable Stacked Nanosheet Transistor for Low Power and High Performance Applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 11.6.1–11.6.4. [Google Scholar]
- Jeong, J.; Yoon, J.-S.; Lee, S.; Baek, R.-H. Novel Trench Inner-Spacer Scheme to Eliminate Parasitic Bottom Transistors in Silicon Nanosheet FETs. IEEE Trans. Electron Devices 2023, 70, 396–401. [Google Scholar] [CrossRef]
- Kumar, U.S.; Rao, V.R. A Thermal-Aware Device Design Considerations for Nanoscale SOI and Bulk FinFETs. IEEE Trans. Electron Devices 2016, 63, 280–287. [Google Scholar] [CrossRef]
- Vermeersch, B.; Bury, E.; Xiang, Y.; Schuddinck, P.; Bhuwalka, K.K.; Hellings, G.; Ryckaert, J. Self-Heating in iN8–iN2 CMOS Logic Cells: Thermal Impact of Architecture (FinFET, Nanosheet, Forksheet and CFET) and Scaling Boosters. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 12–17 June 2022; pp. 371–372. [Google Scholar]
- Yoo, S.; Kim, S. Leakage Optimization of the Buried Oxide Substrate of Nanosheet Field-Effect Transistors. IEEE Trans. Electron Devices 2022, 69, 4109–4114. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Q.; Wu, Z.; Luo, Y.; Cao, L.; Cai, Y.; Yao, J.; Zhang, Z.; Xu, G.; Yin, H.; et al. Narrow Sub-Fin Technique for Suppressing Parasitic-Channel Effect in Stacked Nanosheet Transistors. IEEE J. Electron Devices Soc. 2022, 10, 35–39. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Jeong, J.; Lee, S.; Baek, R.-H. Punch-Through-Stopper Free Nanosheet FETs With Crescent Inner-Spacer and Isolated Source/Drain. IEEE Access 2019, 7, 38593–38596. [Google Scholar] [CrossRef]
- Caubet, V.; Beylier, C.; Borel, S.; Renault, O. Mechanisms of isotropic and selective etching between SiGe and Si. J. Vac. Sci. Technol. B 2006, 24, 2748–2754. [Google Scholar] [CrossRef]
- Rachidi, S.; Campo, A.; Loup, V.; Vizioz, C.; Hartmann, J.-M.; Barnola, S.; Posseme, N. Isotropic dry etching of Si selectively to Si0.7Ge0.3 for CMOS sub-10 nm applications. J. Vac. Sci. Technol. A 2020, 38, 033002. [Google Scholar] [CrossRef]
- Barsukov, Y.; Volynets, V.; Lee, S.; Kim, G.; Lee, B.; Nam, S.K.; Han, K. Role of NO in highly selective SiN/SiO2 and SiN/Si etching with NF3/O2 remote plasma: Experiment and simulation. J. Vac. Sci. Technol. A 2017, 35, 061310. [Google Scholar] [CrossRef]
- Li, J.; Sun, X.; Huang, Z.; Zhang, D.W. Highly Selective Isotropic Etching of Si to SiGe Using CF4/O2/N2 Plasma for Advanced GAA Nanosheet Transistor. Nanomaterials 2025, 15, 1469. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, J.; Gao, Y.; Zhang, D.W. Remote Plasma Selective Silicon Etching Enabled Tunable Sub-Fin Process for Improved Parasitic Bottom Channel Control in Gate-All-Around Nanosheet Field-Effect Transistors. Nanomaterials 2026, 16, 13. https://doi.org/10.3390/nano16010013
Li J, Gao Y, Zhang DW. Remote Plasma Selective Silicon Etching Enabled Tunable Sub-Fin Process for Improved Parasitic Bottom Channel Control in Gate-All-Around Nanosheet Field-Effect Transistors. Nanomaterials. 2026; 16(1):13. https://doi.org/10.3390/nano16010013
Chicago/Turabian StyleLi, Jiayang, Yuan Gao, and David Wei Zhang. 2026. "Remote Plasma Selective Silicon Etching Enabled Tunable Sub-Fin Process for Improved Parasitic Bottom Channel Control in Gate-All-Around Nanosheet Field-Effect Transistors" Nanomaterials 16, no. 1: 13. https://doi.org/10.3390/nano16010013
APA StyleLi, J., Gao, Y., & Zhang, D. W. (2026). Remote Plasma Selective Silicon Etching Enabled Tunable Sub-Fin Process for Improved Parasitic Bottom Channel Control in Gate-All-Around Nanosheet Field-Effect Transistors. Nanomaterials, 16(1), 13. https://doi.org/10.3390/nano16010013

