Enhancement of Electro-Optical Characteristics in GaN-Based Ultraviolet Laser Diodes Through Upper Optical Confinement Structure Design
Abstract
:1. Introduction
2. Laser Structure and Simulation Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagata, K.; Takeda, K.; Nonaka, K.; Ichikawa, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H.; Yoshida, H.; et al. Reduction in threshold current density of 355 nm UV laser diodes. Phys. Status Solidi C 2011, 8, 1564–1568. [Google Scholar] [CrossRef]
- Aoki, Y.; Kuwabara, M.; Yamashita, Y.; Takagi, Y.; Sugiyama, A.; Yoshida, H. A 350-nm-band GaN/AlGaN multiple-quantum-well laser diode on bulk GaN. Appl. Phys. L 2015, 107, 151103. [Google Scholar] [CrossRef]
- Masui, S.; Matsuyama, Y.; Yanamoto, T.; Kozaki, T.; Nagahama, S.; Mukai, T. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn. J. Appl. Phys. 2003, 42, 1318–1320. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. InGaN/GaN/AlGaN based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 1998, 72, 211–213. [Google Scholar] [CrossRef]
- Iida, K.; Kawashima, T.; Miyazaki, A.; Kasugai, H.; Mishima, S.; Honshio, A.; Miyake, Y.; Iwaya, M.; Kamiyama, S.; Amano, H.; et al. Laser diode of 350.9 nm wavelength grown on sapphire substrate by MOVPE. J. Cryst. Growth 2004, 272, 270–273. [Google Scholar] [CrossRef]
- Taketomi, H.; Aoki, Y.; Takagi, Y.; Sugiyama, A.; Kuwabara, M.; Yoshida, H. Over 1 W record-peak-power operation of a 338 nm AlGaN multiple-quantum-well laser diode on a GaN substrate. Jpn. J. Appl. Phys. 2016, 55, 05FJ05. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, D.G.; Liu, Z.S.; Wang, B.; Zhang, Y.H.; Zhang, Z.Z.; Chen, P.; Liang, F. Room temperature continuous-wave operated 2.0-W GaN-based ultraviolet laser di-odes. Opt. Lett. 2022, 47, 1666–1668. [Google Scholar] [CrossRef]
- Murayama, M.; Nakayama, Y.; Yamazaki, K.; Hoshina, Y.; Watanabe, H.; Fuutagawa, N.; Kawanishi, H.; Uemura, T.; Narui, H. Watt-Class. Green. (530 nm) and Blue (465 nm) Laser Diodes. Phys. Status Solidi A 2018, 215, 1700513. [Google Scholar] [CrossRef]
- Nakatsu, Y.; Nagao, Y.; Kozuru, K.; Hirao, T.; Okahisa, E.; Masui, S.; Yanamoto, T.; Nagahama, S. High-efficiency blue and green laser diodes for laser displays. Proc. SPIE 2019, 10918, 99–107. [Google Scholar]
- Liang, F.; Zhao, D.G.; Liu, Z.S.; Chen, P.; Yang, J.; Duan, L.H.; Shi, Y.S.; Wang, H. GaN-based blue laser diode with 6.0 W of output power under continuous-wave op-eration at room temperature. J. Semicond. 2021, 42, 112801. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Imafuji, O.; Nozaki, S.; Hagino, H.; Takigawa, S.; Katayama, T.; Tanaka, T. Optical-loss suppressed InGaN laser diodes using undoped thick wave-guide structure. Proc. SPIE 2016, 9748, 974818. [Google Scholar]
- Liu, J.P.; Zhang, L.Q.; Li, D.Y.; Zhou, K.; Cheng, Y.; Zhou, W.; Tian, A.Q.; Ikeda, M.S.; Zhang, S.M.; Yang, H. GaN-Based Blue Laser Diodes With 2.2 W of Light Output Power Under Continuous-Wave Operation. IEEE Photonics Technol. Lett. 2017, 29, 2203–2206. [Google Scholar] [CrossRef]
- Uchida, S.; Takeya, M.; Ikeda, S.; Mizuno, T.; Fujimoto, T.; Matsumoto, O.; Goto, S.; Tojyo, T.; Ikeda, M. Recent progress in high-power blue-violet lasers. In Proceedings of the IEEE 18th International Semiconductor Laser Conference, Garmisch, Germany, 29 September–3 October 2002; pp. 5–6. [Google Scholar]
- Sizov, D.; Bhat, R.; Zah, C.E. Optical absorption of Mg-doped layers and InGaN quantum wells on c-plane and semipolar GaN structures. J. Appl. Phys. 2013, 113, 203108. [Google Scholar] [CrossRef]
- Seitz, M.; Boisvere, J.; Melanson, B.; Liu, C.; Lin, Q.C.; Wang, G.Y.; Dwyer, M.; Earles, T.; Tansu, N.; Mawst, L.; et al. Demonstration of Ultraviolet III-Nitride Laser Diode with an Asymmetric Waveguide Structure. Proc. SPIE 2024, 12886, 35–40. [Google Scholar]
- Zhang, Z.Z.; Yang, J.; Liang, F.; Chen, P.; Liu, Z.S.; Zhao, D.G. Low threshold current density and high power InGaN-based blue-violet laser diode with an asymmetric waveguide structure. Opt. Express 2023, 31, 7839–7849. [Google Scholar] [CrossRef]
- Yang, J.; Wang, B.B.; Zhao, D.G.; Liu, Z.S.; Liang, F.; Chen, P.; Zhang, Y.H.; Zhang, Z.Z. Realization of 366nm GaN/AlGaN single quantum well ultraviolet laser diodes with a reduction of carrier loss in the waveguide layers. J. Appl. Phys. 2021, 130, 173105. [Google Scholar] [CrossRef]
- Chen, Y.H.; Jiang, D.Y.; Zeng, C.M.; Xu, C.X.; Sun, H.R.; Hou, Y.F.; Zhou, M. Controlling GaN-based laser diode performance by variation of the Al content of an inserted AlGaN electron blocking layer. Nanomaterials 2024, 14, 449. [Google Scholar] [CrossRef]
- Li, Z.M. Physical models and numerical simulation of modern semiconductor lasers. Proc. SPIE 1997, 2994, 698–708. [Google Scholar]
- Zhang, L.Q.; Jiang, D.S.; Zhu, J.J.; Zhao, D.G.; Liu, Z.S.; Zhang, S.M.; Yang, H. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J. Appl. Phys. 2008, 105, 023104. [Google Scholar] [CrossRef]
- Piprek, J.; Sink, R.K.; Hansen, M.A.; Bowers, J.E.; DenBaars, S.P. Simulation and optimization of 420 nm InGaN/GaN laser diodes. Proc. SPIE 2000, 3944, 28–39. [Google Scholar]
- Huang, C.Y.; Lin, Y.D.; Tyagi, A.; Chakraborty, A.; Ohta, H.; Speck, J.S.; DenBaars, S.; Nakamura, S. Optical waveguide simulations for the optimization of InGaN-based green laser diodes. J. Appl. Phys. 2010, 107, 023101. [Google Scholar] [CrossRef]
- Hager, T.; Binder, M.; Brüderl, G.; Eichler, C.; Avramescu, A.; Wurm, T.; Gomez-Iglesias, A.; Stojetz, B.; Tautz, S.; Galler, B.; et al. Carrier transport in green AlInGaN based structures on c-plane substrates. Appl. Phys. Lett. 2013, 102, 231102. [Google Scholar] [CrossRef]
- Hager, T.; Brüderl, G.; Lermer, T.; Tautz, S.; Gomez-Iglesias, A.; Müller, J.; Avramescu, A.; Eichler, C.; Gerhard, S.; Strauss, U. Current dependence of electro-optical param-eters in green and blue (AlIn)GaN laser diodes. Appl. Phys. Lett. 2012, 101, 171109. [Google Scholar] [CrossRef]
- Guenther, B.; Steel, D.G. GaN Lasers. In Encyclopedia of Modern Optics, 2nd ed.; Yoshida, M., Ed.; Elsevier: Tsu, Mie, Japan, 2018; Volume 2, pp. 271–279. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yang, J.; Yu, L.; Sun, L.; Wu, M.; Li, W. Enhancement of Electro-Optical Characteristics in GaN-Based Ultraviolet Laser Diodes Through Upper Optical Confinement Structure Design. Nanomaterials 2025, 15, 596. https://doi.org/10.3390/nano15080596
Li Z, Yang J, Yu L, Sun L, Wu M, Li W. Enhancement of Electro-Optical Characteristics in GaN-Based Ultraviolet Laser Diodes Through Upper Optical Confinement Structure Design. Nanomaterials. 2025; 15(8):596. https://doi.org/10.3390/nano15080596
Chicago/Turabian StyleLi, Zhiwei, Jing Yang, Lina Yu, Linjun Sun, Min Wu, and Weijun Li. 2025. "Enhancement of Electro-Optical Characteristics in GaN-Based Ultraviolet Laser Diodes Through Upper Optical Confinement Structure Design" Nanomaterials 15, no. 8: 596. https://doi.org/10.3390/nano15080596
APA StyleLi, Z., Yang, J., Yu, L., Sun, L., Wu, M., & Li, W. (2025). Enhancement of Electro-Optical Characteristics in GaN-Based Ultraviolet Laser Diodes Through Upper Optical Confinement Structure Design. Nanomaterials, 15(8), 596. https://doi.org/10.3390/nano15080596