N3C-Defect-Tuned g-C3N4 Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Photocatalytic Degradation Test
2.3. Sample Preparation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sci. Total Environ. 2020, 713, 136633. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; He, B.; Wei, S.; Wang, R.; Zhang, R.; Liu, R. Dynamic Fe-O-Cu induced electronic structure modulation on CuOx electrode for selective electrocatalytic oxidation of glycerol. Appl. Catal. B Environ. Energy 2025, 362, 124743. [Google Scholar] [CrossRef]
- He, B.; Zhong, S.; Li, K.; Wei, S.; Li, M.; Liu, R. Ionic liquids: The emerging “cardiotonic” for photocatalytic materials. Coord. Chem. Rev. 2025, 529, 216461. [Google Scholar] [CrossRef]
- Patnaik, S.; Sahoo, D.P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon 2021, 172, 682–711. [Google Scholar] [CrossRef]
- Han, C.; Su, P.; Tan, B.; Ma, X.; Lv, H.; Huang, C.; Wang, P.; Tong, Z.; Li, G.; Huang, Y.; et al. Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity. J. Colloid Interface Sci. 2021, 581, 159–166. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, D.; Zhou, Y.; Qin, F.; Wang, H.; Wang, W.; Yang, Y.; Zeng, G. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution. Appl. Catal. B Environ. 2022, 303, 120904. [Google Scholar] [CrossRef]
- Shi, L.; Yang, L.; Zhou, W.; Liu, Y.; Yin, L.; Hai, X.; Song, H.; Ye, J. Photoassisted Construction of Holey Defective g-C3N4 Photocatalysts for Efficient Visible-Light-Driven H2O2 Production. Small 2018, 14, 1703142. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, D.; Gu, L.; Xu, G.; Li, Z.; Yuan, Y. Awakening n → π* electronic transition by breaking hydrogen bonds in graphitic carbon nitride for increased photocatalytic hydrogen generation. Chem. Eng. J. 2020, 399, 125847. [Google Scholar] [CrossRef]
- Lu, S.; Shen, L.; Li, X.; Yu, B.; Ding, J.; Gao, P.; Zhang, H. Advances in the photocatalytic reduction functions of graphitic carbon nitride-based photocatalysts in environmental applications: A review. J. Clean. Prod. 2022, 378, 134589. [Google Scholar] [CrossRef]
- Oseghe, E.O.; Akpotu, S.O.; Mombeshora, E.T.; Oladipo, A.O.; Ombaka, L.M.; Maria, B.B.; Idris, A.O.; Mamba, G.; Ndlwana, L.; Ayanda, O.S.; et al. Multi-dimensional applications of graphitic carbon nitride nanomaterials—A review. J. Mol. Liq. 2021, 344, 117820. [Google Scholar] [CrossRef]
- Tian, N.; Huang, H.; Du, X.; Dong, F.; Zhang, Y. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 2019, 7, 11584–11612. [Google Scholar] [CrossRef]
- Li, H.; Zhu, B.; Cheng, B.; Luo, G.; Xu, J.; Cao, S. Single-atom Cu anchored on N-doped graphene/carbon nitride heterojunction for enhanced photocatalytic H2O2 production. J. Mater. Sci. Technol. 2023, 161, 192–200. [Google Scholar] [CrossRef]
- Yang, P.; Shen, A.; Zhu, Z.; Wang, L.; Tang, R.; Yang, K.; Chen, M.; Dai, H.; Zhou, X. Construction of carbon nitride-based heterojunction as photocatalyst for peroxymonosulfate activation: Important role of carbon dots in enhancing photocatalytic activity. Chem. Eng. J. 2023, 464, 142724. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, M.; Yang, W.; Xiao, Y.; Zeng, L.; Wu, X.; Xu, Q.; Su, C.; He, Q. Homogeneous Carbon/Potassium-Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Near-Infrared Photocatalytic H2 Production. Adv. Mater. 2021, 33, 2101455. [Google Scholar] [CrossRef]
- Dash, P.; Thirumurugan, S.; Nataraj, N.; Lin, Y.C.; Liu, X.; Dhawan, U.; Chung, R.J. Near-Infrared Driven Gold Nanoparticles-Decorated g-C3N4/SnS2 Heterostructure through Photodynamic and Photothermal Therapy for Cancer Treatment. Int. J. Nanomed. 2024, 19, 10537–10550. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, X.; Zhang, W.; Kheradmand, A.; Gu, S.; Kobielusz, M.; Macyk, W.; Li, H.; Huang, J.; Jiang, Y. Near-Infrared-Triggered Nitrogen Fixation over Upconversion Nanoparticles Assembled Carbon Nitride Nanotubes with Nitrogen Vacancies. ACS Appl. Mater. Interfaces 2021, 13, 32937–32947. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Jiang, L.; Yu, H.; Zhao, Y.; Chen, H.; Yuan, X.; Liang, J.; Li, H.; Wu, Z. Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 2022, 427, 130991. [Google Scholar] [CrossRef]
- Wang, J.; Gao, B.; Dou, M.; Huang, X.; Ma, Z. A porous g-C3N4 nanosheets containing nitrogen defects for enhanced photocatalytic removal meropenem: Mechanism, degradation pathway and DFT calculation. Environ. Res. 2020, 184, 109339. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, L.; Wang, M.; Tian, J.; Jin, X.; Guo, L.; Wang, L.; Shi, J. Carbon-vacancy modified graphitic carbon nitride: Enhanced CO2 photocatalytic reduction performance and mechanism probing. J. Mater. Chem. A 2019, 7, 1556–1563. [Google Scholar] [CrossRef]
- Niu, P.; Liu, G.; Cheng, H.-M. Nitrogen Vacancy-Promoted Photocatalytic Activity of Graphitic Carbon Nitride. J. Phys. Chem. C 2012, 116, 11013–11018. [Google Scholar] [CrossRef]
- Dong, G.; Qiu, P.; Chen, Q.; Huang, C.; Chen, F.; Liu, X.; Li, Z.; Wang, Y.; Zhao, Y. K+-Intercalated carbon nitride with electron storage property for high-efficiency visible light driven nitrogen fixation. Chem. Eng. J. 2022, 433, 133573. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, J.; Yuan, X.; Guo, J.; Liang, J.; Tang, W.; Chen, Y.; Li, X.; Wang, H.; Chu, W. Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Adv. Colloid Interface Sci. 2021, 296, 102523. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Shan, R.; Gu, J.; Wang, S.; Cheng, L.; Yuan, H.; Chen, Y. Unraveling the impact of three coordinate nitrogen (N3C) vacancies in porous carbon nitride nanobelt for boosted photocatalytic degradation of microplastics and antibiotics. Appl. Catal. B Environ. Energy 2024, 358, 124402. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, P.; Ma, D.; Zhong, J. Construction of three-coordinated (N3C) nitrogen vacancies in g-C3N4 for efficient photocatalytic CO2 reduction. Ceram. Int. 2024, 50 Pt B, 33131–33142. [Google Scholar] [CrossRef]
- Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. J. Chem. Eng. J. 2020, 379, 122282. [Google Scholar] [CrossRef]
- Zhao, D.; Dong, C.-L.; Wang, B.; Chen, C.; Huang, Y.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. Adv. Mater. 2019, 31, 1903545. [Google Scholar] [CrossRef]
- Wang, H.; Bu, Y.; Wu, G.; Zou, X. The promotion of the photocatalytic nitrogen fixation ability of nitrogen vacancy-embedded graphitic carbon nitride by replacing the corner-site carbon atom with phosphorus. Dalton Trans. 2019, 48, 11724–11731. [Google Scholar] [CrossRef]
- Li, Y.; Gu, M.; Zhang, X.; Fan, J.; Lv, K.; Carabineiro, S.A.; Dong, F. 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Mater. Today 2020, 41, 270–303. [Google Scholar] [CrossRef]
- Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J. Structure engineering of 1T/2H multiphase MoS2 via oxygen incorporation over 2D layered porous g-C3N4 for remarkably enhanced photocatalytic hydrogen evolution. Mater. Today Nano 2022, 18, 100204. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Liu, S.; Tong, J.; Kong, F.; Sun, N.; Han, X.; Zhang, Y. Enhanced photocatalytic activity and optical response mechanism of porous graphitic carbon nitride (g-C3N4) nanosheets. Mater. Res. Bull. 2021, 140, 111263. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Gan, L.; Meng, J.; Feng, Y.; Wang, K.; Zhou, K.; Wang, C.; Han, X.; Zhou, X. Amorphous Carbon Nitride with Three Coordinate Nitrogen (N3C) Vacancies for Exceptional NO Abatement in Visible Light. Adv. Energy Mater. 2021, 11, 2004001. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Cheng, C.; Dai, X.; Chen, F.; Ning, J.; Wang, W.; Hu, Y. Photochemical Tuning of Tricoordinated Nitrogen Deficiency in Carbon Nitride to Create Delocalized π Electron Clouds for Efficient CO2 Photoreduction. ACS Catal. 2024, 14, 10204–10213. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Zhou, Q.; Zhang, H.; Zhang, H.; An, B.; Ning, H.; Xing, T.; Wang, M.; Wu, M.; et al. Boosting C3H6 Epoxidation via Tandem Photocatalytic H2O2 Production over Nitrogen-Vacancy Carbon Nitride. ACS Catal. 2023, 13, 13101–13110. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Tang, Y.; Zhang, H.; Li, K. Preparation of phosphorus-doped mesoporous g-C3N4 and its photocatalytic degradation of tetracycline hydrochloride. Microporous Mesoporous Mater. 2023, 360, 112733. [Google Scholar] [CrossRef]
- Dong, G.; Ho, W.; Wang, C. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 2015, 3, 23435–23441. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, Z.; Lv, K.; Wu, X.; Li, Q.; Li, Y.; Li, X.; Sun, J. Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure. Appl. Catal. B Environ. 2018, 232, 330–339. [Google Scholar] [CrossRef]
- Kang, Y.; YANG, Y.; Yin, L.-C.; Kang, X.; Liu, G.; Cheng, H. An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visible-Light-Responsive Range for Photocatalytic Hydrogen Generation. Adv. Mater. 2015, 27, 4572–4577. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, J.; Qiao, W.; Li, L.; Zhu, Z. Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride. Nanoscale 2015, 7, 18887–18890. [Google Scholar] [CrossRef]
- Che, H.; Liu, C.; Che, G.; Liao, G.; Dong, H.; Li, C.; Song, N.; Li, C. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273. [Google Scholar] [CrossRef]
- Gou, N.; Yang, W.; Gao, S.; Li, Q. Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation. J. Hazard. Mater. 2023, 447, 130795. [Google Scholar] [CrossRef]
- Li, Y.; Gu, M.; Zhang, M.; Zhang, X.; Lv, K.; Liu, Y.; Ho, W.; Dong, F. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for Efficient and stable NO photo-oxidation. Chem. Eng. J. 2020, 389, 124421. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Chen, Z. A solid-state chemical reduction approach to synthesize graphitic carbon nitride with tunable nitrogen defects for efficient visible-light photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 535, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Ma, T.Y.; Gao, G.; Du, X.-W.; Qiao, S.Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 2015, 8, 3708–3717. [Google Scholar] [CrossRef]
- Tong, H.; Odutola, J.; Song, J.; Peng, L.; Tkachenko, N.; Antonietti, M.; Pelicano, C.M. Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H2O2 Evolution via Controllable n → π* Electronic Transition Activation. Adv. Mater. 2024, 36, 2412753. [Google Scholar] [CrossRef]
- Zhan, X.; Zeng, Y.; Zhang, H.; Wang, X.; Jin, D.; Jin, H.; Luo, S.; Yang, L.; Hong, B. The coral-like carbon nitride array: Rational design for efficient photodegradation of tetracycline under visible light. J. Environ. Chem. Eng. 2023, 11, 109201. [Google Scholar] [CrossRef]
- Fu, J.; Mo, Z.; Chen, H.; Chen, Z.; Zhu, X.; Yan, J.; Liu, J.; Wei, Y.; Li, H.; Xu, H. Three coordinate nitrogen (N3C) vacancies from in-situ hydrogen bond breaking over polymeric carbon nitride for efficient photocatalysis. J. Environ. Chem. Eng. 2023, 11, 109495. [Google Scholar] [CrossRef]
- Li, F.; Tang, M.; Li, T.; Zhang, L.; Hu, C. Two-dimensional graphene/g-C3N4 in-plane hybrid heterostructure for enhanced photocatalytic activity with surface-adsorbed pollutants assistant. Appl. Catal. B Environ. 2020, 268, 118397. [Google Scholar] [CrossRef]
- Shen, Q.; Wei, L.; Bibi, R.; Wang, K.; Hao, D.; Zhou, J.; Li, N. Boosting photocatalytic degradation of tetracycline under visible light over hierarchical carbon nitride microrods with carbon vacancies. J. Hazard. Mater. 2021, 413, 125376. [Google Scholar] [CrossRef]
- Sun, H.; Guo, F.; Pan, J.; Huang, W.; Wang, K.; Shi, W. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem. Eng. J. 2021, 406, 126844. [Google Scholar] [CrossRef]
- Chang, L.-L.; Hu, C.; Wang, C.-Y.; Chen, W.-L.; Yamada, K.; Wu, A.-Y.; Yoshida, M.; Chien, S.-C.; Tung, K.-L. Synergistic effects of carbon and nitrogen vacancies in carbon nitride for photocatalytic H2 production and tetracycline oxidation. Sep. Purif. Technol. 2025, 354, 129346. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, Z.; Fu, N.; Li, X.; Hu, L.; Li, X.; Zhang, C. Novel feathery P/S Co-doped graphitic carbon nitride for highly efficient synergistic photocatalytic H2O2 generation and tetracycline degradation. RSC Adv. 2024, 14, 38391–38402. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A.; Kunnel, E.S.; Trivedi, S.; Sasidharan, R.; Kumar, A.; Chinthala, M. Mechanistic Insights into Simultaneous Oxygen-Doped and Defect-Engineered Carbon Nitride as a Multifunctional Photocatalyst for Tetracycline Degradation, N2 Fixation, and H2O2 Production. Ind. Eng. Chem. Res. 2024, 63, 18975–18988. [Google Scholar] [CrossRef]
- Cai, W.; Wu, X.; Ren, G.; Tan, J.; He, X.; Tu, C.; Liu, Y.; He, Y. Photocatalytic degradation of tetracycline by g-C3N4 homostructure modified by cyano group and nitrogen defect. Diam. Relat. Mater. 2024, 143, 110898. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, Y.; Xu, J.; Xing, J.; Lin, H.; Wang, L. Introducing Br, K, and cyano group into carbon nitride for efficient photocatalytic hydrogen peroxide production then in situ tetracycline mineralization. J. Colloid Interface Sci. 2024, 667, 433–440. [Google Scholar] [CrossRef]
- Xing, J.; Huang, X.; Yong, X.; Li, X.; Li, J.; Wang, J.; Wang, N.; Hao, H. N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation. Chem. Eng. J. 2023, 455, 140570. [Google Scholar] [CrossRef]
- Lian, X.; Pelicano, C.M.; Huang, Z.; Yi, X.; Savateev, A.; Antonietti, M. Rational Design of TaON/Potassium Poly(Heptazine Imide) Heterostructure for Multifunctional Environmental Remediation. Adv. Funct. Mater. 2024, 34, 2403653. [Google Scholar] [CrossRef]
Sample | N2C (at %) | N3C (at %) | N-HX (at %) | N3C/N2C (at %) |
---|---|---|---|---|
g-C3N4 | 39.30 | 16.20 | 4.44 | 0.41 |
ACN-1 | 40.48 | 14.58 | 4.49 | 0.36 |
ACN-3 | 41.16 | 14.50 | 4.51 | 0.35 |
ACN-5 | 43.04 | 14.05 | 4.76 | 0.32 |
Sample | C=C/C-C (at %) | N–C=N (at %) |
---|---|---|
g-C3N4 | 11.40 | 24.63 |
ACN-1 | 12.48 | 24.77 |
ACN-3 | 10.60 | 23.75 |
ACN-5 | 9.79 | 24.54 |
Sample | C% | N% | C/N |
---|---|---|---|
g-C3N4 | 50.41 | 49.59 | 1.01 |
ACN-1 | 49.72 | 50.28 | 0.98 |
ACN-3 | 48.75 | 51.28 | 0.95 |
ACN-5 | 48 | 52 | 0.92 |
Name | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
g-C3N4 | 44.47 | 0.1898 | 17.0696 |
ACN-3 | 87.08 | 0.3725 | 17.1123 |
Samples | Dosage (mg) | Pollutants | Reaction Time | Reaction Conditions | Light Source | Removal Rate | Ref. |
---|---|---|---|---|---|---|---|
NCN 0.48 | 40 | 40 mL ENR (20 mg/L) | 240 min | H2O | Xenon lamp (300 W, λ > 420 nm) | 97.1% | [23] |
Ht CN | 50 | 50 mL TC (20 mg/L) | 80 min | H2O | Xenon lamp (300 W, λ > 420 nm) | 67% | [46] |
CN1.5 | 50 | 200 mL TC (30 mg/L) | 75 min | H2O | Xenon lamp (300 W, λ > 420 nm) | 87.9% | [48] |
CNx-0.5 | 20 | 50 mL TC (10 mg/L) | 60 min | PS (2 mM, PH: 7) | Xenon lamp (300 W, λ > 420 nm) | 68% | [49] |
M-CN | 100 | 50 mL TC (15 mg/L) | 120 min | H2O | Xenon lamp (300 W, λ > 420 nm) | 82% | [50] |
P0.3S0.2-CN | 30 mg | 50 mL (20 mg/L) | 100 min | 1.6 mg FeSO4·7H2O | Xenon lamp (300 W, λ > 420 nm) | 87.3% | [51] |
ACN-5 | 100 mg | 100 mL (10 mg/L) | 60 min | H2O | Xenon lamp (250 W, λ > 420 nm) | 88% | [52] |
g-C3N4–0.5/g-c3N4-2 | 30 | 50 mL TC (20 mg/L) | 120 min | H2O | Xenon lamp (300 W, λ > 420 nm) | 84.2% | [53] |
Br/K/cyano-CN | 10 | 50 mL (10 mg/L) | 30 min | Fe2+ (4 mg/L)/H2O2 | Xenon lamp (300 W, λ > 420 nm) | 97.3% | [54] |
CN0.75 | 20 | 50 mL (20 mg/L) | 60 min | H2O | Xenon lamp (300 W, λ > 420 nm) | 93% | [55] |
20TaON/KPHI | 20 | 30 mL (10 mg/L) | 30 min | H2O | Light emitting diode (LED, M455F3) | 97% | [56] |
ACN-3 | 20 | 100 mL TC (80 mg/L) | 60 min | H2O | Xenon lamp (300 W, λ > 420 nm) | 54.8% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Liu, C.; Zheng, L.; Chen, F.; Qian, J.; Meng, X.; Chen, Z.; Zhong, S.; He, B. N3C-Defect-Tuned g-C3N4 Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance. Nanomaterials 2025, 15, 466. https://doi.org/10.3390/nano15060466
Lu Y, Liu C, Zheng L, Chen F, Qian J, Meng X, Chen Z, Zhong S, He B. N3C-Defect-Tuned g-C3N4 Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance. Nanomaterials. 2025; 15(6):466. https://doi.org/10.3390/nano15060466
Chicago/Turabian StyleLu, Yu, Chengbao Liu, Leizhi Zheng, Feng Chen, Junchao Qian, Xianrong Meng, Zhigang Chen, Sheng Zhong, and Bin He. 2025. "N3C-Defect-Tuned g-C3N4 Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance" Nanomaterials 15, no. 6: 466. https://doi.org/10.3390/nano15060466
APA StyleLu, Y., Liu, C., Zheng, L., Chen, F., Qian, J., Meng, X., Chen, Z., Zhong, S., & He, B. (2025). N3C-Defect-Tuned g-C3N4 Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance. Nanomaterials, 15(6), 466. https://doi.org/10.3390/nano15060466