Pigments and Near-Infrared Phosphors Based on Mn5+
Abstract
:1. Introduction
2. Electronic and Optical Properties of Mn5+ Ions
3. Spectroscopic Properties, Color, and Photoluminescence of Mn5+ in Crystalline Solids
Host Material | Dq [cm−1] | B [cm−1] | C [cm−1] | β1 | 1E [cm−1] | Reference |
---|---|---|---|---|---|---|
Y2SiO5 | 1133 | 550 | 2255 | 0.6642 | 8754.0 | [35] |
Sr10(VO4)6F2 | 1088 | 518 | 2321 | 0.6577 | 8642.4 | [36] |
Sr5(PO4)3Cl | 1053 | 510 | 2407 | 0.6679 | 8710 | [37] |
Ca2PO4Cl | 1162 | 455 | 2657 | 0.6857 | 8849.6 | [37] |
Li3PO4 | 1208 | 475 | 2556 | 0.6767 | 8802.0 | [37] |
Ca2AsO4Cl | 1030 | 530 | 2245 | 0.6516 | N.A. * | [38] |
Ca2VO4Cl | 1000 | 535 | 2253 | 0.6557 | N.A. | [38] |
Li3VO4 | 1049 | 646 | 2006 | 0.6842 | 8950.9 | [39] |
YAlO3 | 1100 | 485 | 2256 | 0.6296 | 8267.2 | [40] |
Ba3(VO4)2 | 1000 | 530 | 2250 | 0.6525 | 8499.1 | [41] |
Ca6Ba(PO4)4O | 1060 | 544 | 2292 | 0.669 | 8773.9 | [42] |
Ba2SiO4 | 1131 | 419 | N.A. | N.A. | 8403.4 | [43] |
4. Luminescence Thermometry with Mn5+ Ions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pfaff, G. Inorganic Pigments; Walter de Gruyter: Berlin, Germany, 2017; pp. 54–56. [Google Scholar]
- Li, J.; Kumari, L.S.; Subramanian, M.A. Solid state inorganic color pigments: Ancient to modern. In Comprehensive Inorganic Chemistry III, 3rd ed.; Reedijk, J., Poeppelmeier, K.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 16, pp. 154–196. [Google Scholar]
- Auer, G. Titanium dioxide. In Industrial Inorganic Pigments, 3rd ed.; Buxbaum, G., Pfaff, G., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp. 51–81. [Google Scholar]
- Pfaff, G. Titanium dioxide pigments. In Encyclopedia of Color, Dyes, Pigments, 1st ed.; Pfaff, G., Ed.; Walter de Gruyter: Berlin, Germany, 2022; Volume 3, pp. 1177–1194. [Google Scholar]
- Gao, H.; Yang, S.; Mao, D.; Long, M.; Qu, X. Significant zinc release from widely-used commercial lithopone pigments under solar irradiation. Environ. Pollut. 2022, 292, 118352. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, S.; Basha, R.; Sreeram, K.J.; Sangilimuthu, S.N.; Nair, B.U. Functional pigments from chromium(III) oxide nanoparticles. Dye. Pigment. 2012, 94, 548–552. [Google Scholar] [CrossRef]
- Wiese, J. Iron oxide pigments. In Industrial Inorganic Pigments, 3rd ed.; Buxbaum, G., Pfaff, G., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp. 99–111. [Google Scholar]
- Tücks, A.; Beck, H.P. The photochromic effect of bismuth vanadate pigments. Part I: Synthesis, characterization and lightfastness of pigment coatings. J. Solid State Chem. 2005, 178, 1145–1156. [Google Scholar] [CrossRef]
- Bhakare, M.A.; Wadekar, P.H.; Khose, R.V.; Bondarde, M.P.; Some, S. Eco-friendly biowaste-derived graphitic carbon as black pigment for conductive paint. Prog. Org. Coat. 2020, 147, 105872. [Google Scholar] [CrossRef]
- Marciniak, L.; Kniec, K.; Elżbieciak-Piecka, K.; Trejgis, K.; Stefanska, J.; Dramićanin, M.D. Luminescence thermometry with transition metal ions. A review. Coord. Chem. Rev. 2022, 469, 214671. [Google Scholar] [CrossRef]
- Brik, M.G.; Ma, C.-G. Theoretical Spectroscopy of Transition Metal and Rare Earth Ions: From Free State to Crystal Field, 1st ed.; Jenny Stanford Publishing: Singapore, 2019; pp. 35–37. [Google Scholar]
- Kung, H.H. Spectroscopy of Transition Metal Ions on Surfaces. Appl. Catal. A Gen. 2001, 213, 141–142. [Google Scholar] [CrossRef]
- Zhou, Q.; Dolgov, L.; Srivastava, A.M.; Zhou, L.; Wang, Z.; Shi, J.; Dramićanin, M.D.; Brik, M.G.; Wu, M. Mn2+ and Mn4+ Red Phosphors: Synthesis, Luminescence and Applications in WLEDs. A Review. J. Mater. Chem. C 2018, 6, 2652–2671. [Google Scholar] [CrossRef]
- Oka, R.; Masui, T. Synthesis and characterization of black pigments based on calcium manganese oxides for high near-infrared (NIR) reflectance. RSC Adv. 2016, 6, 90952–90957. [Google Scholar] [CrossRef]
- Smith, A.E.; Mizoguchi, H.; Delaney, K.; Spaldin, N.A.; Sleight, A.W.; Subramanian, M.A. Mn3+ in trigonal bipyramidal coordination: A new blue chromophore. J. Am. Chem. Soc. 2009, 131, 17084–17086. [Google Scholar] [CrossRef]
- Divya, S.; Das, S. Eco-friendly Li3InB2O6 based red pigments for various IR blocking cool coating applications. Opt. Mater. 2020, 109, 110410. [Google Scholar] [CrossRef]
- Tamilarasan, S.; Sarma, D.; Reddy, M.L.P.; Natarajan, S.; Gopalakrishnan, J. YGa1−xMnxO3: A novel purple inorganic pigment. RSC Adv. 2013, 3, 3199–3202. [Google Scholar] [CrossRef]
- Medina, E.A.; Li, J.; Subramanian, M.A. Colored oxides with hibonite structure II: Structural and optical properties of CaAl12O19-type pigments with chromophores based on Fe, Mn, Cr and Cu. Prog. Solid State Chem. 2017, 45–46, 9–29. [Google Scholar] [CrossRef]
- Kim, S.W.; Saito, Y.; Hasegawa, T.; Toda, K.; Uematsu, K.; Sato, M. Development of a novel nontoxic vivid violet inorganic pigment—Mn3+-doped LaAlGe2O7. Dye. Pigment. 2017, 136, 243–247. [Google Scholar] [CrossRef]
- Hwang, D.-H.; Han, K.-S.; Lee, B.-H. Synthesis and formation mechanism of Mn-doped Zn2SiO4 brown pigment. Mater. Sci. Forum 2011, 695, 295–298. [Google Scholar] [CrossRef]
- Aso, S.; Onoda, H. Synthesis of cobalt-substituted manganese phosphate purple pigments. Materials 2023, 16, 4132. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, P.; Lei, H.; Li, Y.; Cao, W.; Kuang, J. Synthesis and properties of novel turquoise-green pigments based on BaAl2-xMnxO4+y. Dye. Pigment. 2018, 155, 212–217. [Google Scholar] [CrossRef]
- Merkle, L.D.; Pinto, A.; Verdún, H.R.; McIntosh, B. Laser action from Mn5+ in Ba3(VO4)2. Appl. Phys. Lett. 1992, 61, 2386–2388. [Google Scholar] [CrossRef]
- Moncorgé, R.; Manaa, H.; Boulon, G. Cr4+ and Mn5+ active centers for new solid state laser materials. Opt. Mater. 1994, 4, 139–151. [Google Scholar] [CrossRef]
- Merkle, L.D.; Guyot, Y.; Chai, B.H.T. Spectroscopic and laser investigations of Mn5+: Sr5(VO4)3F. J. Appl. Phys. 1995, 77, 474–480. [Google Scholar] [CrossRef]
- Ma, L.; Peng, Y.; Pei, Y.; Zeng, J.; Shen, H.; Cao, J.; Qiao, Y.; Wu, Z. Systematic discovery about NIR spectral assignment from chemical structural property to natural chemical compounds. Sci. Rep. 2019, 9, 9503. [Google Scholar] [CrossRef] [PubMed]
- Gschwend, P.M.; Keevend, K.; Aellen, M.; Gogos, A.; Krumeich, F.; Herrmann, I.K.; Pratsinis, S.E. Bi2O3 boosts brightness, biocompatibility and stability of Mn-doped Ba3(VO4)2 as NIR-II contrast agent. J. Mater. Chem. B 2021, 9, 3038–3046. [Google Scholar] [CrossRef]
- Cao, R.; Yu, X.; Cao, C.; Qiu, J. Near-infrared emission Ba3(PO4)2: Mn5+ phosphor and potential application in vivo fluorescence imaging. Spectrochim. Acta Part A 2014, 128, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Andreici, E.L.; Gruia, A.S.; Avram, N.M. The parameters of the free ions Mn5+ and Fe6+. Phys. Scr. 2012, 2012, 014060. [Google Scholar] [CrossRef]
- Sugano, S.; Tanabe, Y.; Kamimura, H. Multiplets of Transition-Metal Ions in Crystals. In Pure and Applied Physics; Massey, H.S.W., Brueckner, K.A., Eds.; Academic Press: New York, NY, USA, 1970; pp. 107–111. [Google Scholar]
- Hömmerich, U.; Eilers, H.; Yen, W.M.; Verdun, H.R. The optical center MnO43− in Y2SiO5:Mn, X (X = Al, Ca). Chem. Phys. Lett. 1993, 213, 163–167. [Google Scholar] [CrossRef]
- Srivastava, A.M.; Brik, M.G. Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3. Opt. Mater. 2013, 35, 1544–1548. [Google Scholar] [CrossRef]
- Brik, M.G.; Camardello, S.J.; Srivastava, A.M. Influence of covalency on the Mn4+ 2Eg→4A2g emission energy in crystals. ECS J. Solid State Sci. Technol. 2015, 4, 39–43. [Google Scholar] [CrossRef]
- Ma, C.-G.; Wang, Y.; Liu, D.-X.; Li, Z.; Hu, X.-K.; Tian, Y.; Brik, M.G.; Srivastava, A.M. Origin of the β1 parameter describing the nephelauxetic effect in transition metal ions with spin-forbidden emissions. J. Lumin. 2018, 197, 142–146. [Google Scholar] [CrossRef]
- Shen, Y.; Riedener, T.; Bray, K.L. Effect of pressure on site-symmetry distortions of Mn5+ and Cr4+ in Y2SiO5. Phys. Rev. B 2000, 61, 9277–9286. [Google Scholar] [CrossRef]
- Scott, M.A.; Henderson, B.; Gallagher, H.G.; Han, T.P.J. Optical spectroscopy of (MnO4)3− and (VO4)5− in Sr10(VO4)6F2. J. Phys. Condens. Matter 1997, 9, 9893–9908. [Google Scholar] [CrossRef]
- Brik, M.G.; Cavalli, E.; Borromei, R.; Bettinelli, M. Crystal field parameters and energy level structure of the MnO43− tetroxo anion in Li3PO4, Ca2PO4Cl and Sr5(PO4)3Cl crystals. J. Lumin. 2009, 129, 801–806. [Google Scholar] [CrossRef]
- Wu, X.-X.; Yu, X.-P.; Zheng, W.-C. Studies of EPR parameters for Mn5+-doped Ca2(MO4)Cl (M = P, As, V) crystals from a two-mechanism model. Eur. Phys. J. Appl. Phys. 2014, 68, 30601. [Google Scholar] [CrossRef]
- Andreici, E.-L. Modeling of crystal field and spin-hamiltonian parameters for tetrahedral coordinated Mn5+ doped in Li3VO4. AIP Conf. Proc. 2012, 1472, 101–107. [Google Scholar]
- Brik, M.G.; Sildos, I.; Berkowski, M.; Suchocki, A. Spectroscopic and crystal field studies of YAlO3 single crystals doped with Mn ions. J. Phys. Condens. Matter 2009, 21, 025404. [Google Scholar] [CrossRef] [PubMed]
- Buijsse, B.; Schmidt, J.; Chan, I.Y.; Singel, D.J. Electron spin-echo-detected excitation spectroscopy of manganese-doped Ba3(VO4)2: Identification of tetrahedral Mn5+ as the active laser center. Phys. Rev. B 1995, 51, 6215. [Google Scholar] [CrossRef] [PubMed]
- Dramićanin, M.D.; Marciniak, Ł.; Kuzman, S.; Piotrowski, W.; Ristić, Z.; Periša, J.; Evans, I.; Mitrić, J.; Đorđević, V.; Romčević, N.; et al. Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry. Light Sci. Appl. 2022, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Nie, J.; Liu, S.; Qiu, J. Structural variation and near infrared luminescence in Mn5+-doped M2SiO4 (M = Ba, Sr, Ca) phosphors by cation substitution. J. Mater. Sci. Mater. Electron. 2018, 29, 6419–6427. [Google Scholar] [CrossRef]
- Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2419. [Google Scholar] [CrossRef] [PubMed]
- Raja, R.; Thomas, J.M. Nanoporous solids as receptacles and catalysts for unusual conversions of organic compounds. Solid State Sci. 2006, 8, 326–331. [Google Scholar] [CrossRef]
- Chen, N.Y.; Garwood, W.E. Some catalytic properties of ZSM-5, a new shape selective zeolite. J. Catal. 1978, 52, 453–458. [Google Scholar] [CrossRef]
- Shahid, R.; Murugavel, S. Synthesis and characterization of olivine phosphate cathode material with different particle sizes for rechargeable lithium-ion batteries. Mater. Chem. Phys. 2013, 140, 659–664. [Google Scholar] [CrossRef]
- Jin, B.; Sun, G.; Liang, J.; Gu, H.-B. Physicochemical properties of lithium iron phosphate carbon as lithium polymer battery cathodes. Int. J. Energy Res. 2013, 37, 500–509. [Google Scholar] [CrossRef]
- Anseán, D.; González, M.; Viera, J.C.; García, V.M.; Blanco, C.; Valledor, M. Fast charging technique for high power lithium iron phosphate batteries: A cycle life analysis. J. Power Sources 2013, 239, 9–15. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Z.; Qing, F.; Hong, Y.; Zhang, X. Applications of calcium phosphate nanoparticles in porous hard tissue engineering scaffolds. Nano 2012, 7, 1230004. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Ruiz-Hernández, E. Bioceramics: From bone regeneration to cancer nanomedicine. Adv. Mater. 2011, 23, 5177–5218. [Google Scholar] [CrossRef]
- Heinemann, S.; Heinemann, C.; Wenisch, S.; Alt, V.; Worch, H.; Hanke, T. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013, 9, 4878–4888. [Google Scholar] [CrossRef] [PubMed]
- Saviuc-Paval, A.M.; Victor Sandu, A.; Marcel Popa, I.; Anca Sandu, I.C.; Petru Bertea, A.; Sandu, I. Colorimetric and microscopic study of the thermal behavior of new ceramic pigments. Microsc. Res. Tech. 2013, 76, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Laha, S.; Sharma, R.; Bhat, S.V.; Reddy, M.L.P.; Gopalakrishnan, J.; Natarajan, S. Ba3(P1-xMnxO4)2: Blue/green inorganic materials based on tetrahedral Mn(V). Bull. Mater. Sci. 2011, 34, 1257–1262. [Google Scholar] [CrossRef]
- Gu, X.-Y.; Luo, W.-Q.; Chen, Y.-X. Study on Co-KZr2(PO4)3-type crystalline purple ceramic pigments. Appl. Mech. Mater. 2010, 34–35, 790–794. [Google Scholar] [CrossRef]
- Llusar, M.; Zielinska, A.; Tena, M.A.; Badenes, J.A.; Monrós, G. Blue-violet ceramic pigments based on Co and Mg Co2-xMgxP2O7 diphosphates. J. Eur. Ceram. Soc. 2010, 30, 1887–1896. [Google Scholar] [CrossRef]
- Onoda, H.; Tange, K.; Tanaka, I. Influence of lanthanum addition on preparation and powder properties of cobalt phosphates. J. Mater. Sci. 2008, 43, 5483–5488. [Google Scholar] [CrossRef]
- Brunold, T.C.; Güdel, H.U.; Kück, S.; Huber, G. Excited state properties of ferrate (VI) doped crystals of K2SO4 and K2CrO4. J. Lumin. 1997, 65, 293–301. [Google Scholar] [CrossRef]
- Kuck, S.; Petermann, K.; Pohlmann, U.; Huber, G. Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections. Phys. Rev. B Condens. Matter 1995, 51, 17323–17331. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Li, J.; Ozarowski, A.; Sleight, A.W.; Subramanian, M.A. Intense turquoise and green colors in brownmillerite-type oxides based on Mn5+ in Ba2In2−xMnxO5+x. Inorg. Chem. 2013, 52, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Lachwa, H.; Reinen, D. Color and electronic structure of manganese(V) and manganese(VI) in tetrahedral oxo coordination. A spectroscopic investigation. Inorg. Chem. 1989, 28, 1044–1053. [Google Scholar] [CrossRef]
- Albrecht, C.; Cohen, S.; Mayer, I.; Reinen, D. The structure of Sr2(VO4)Cl and Sr2(CrO4)Cl and spectroscopic properties of Mn5+-and Cr5+-doped Sr2(VO4)Cl. J. Solid State Chem. 1993, 107, 218–228. [Google Scholar] [CrossRef]
- Wu, P.; Zeng, Y.Z.; Wang, C.M. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods. Biomaterials 2024, 25, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Chernorukov, N.G.; Knyazev, A.V.; Bulanov, E.N. Phase transitions and thermal expansion of apatite-structured compounds. Inorg. Mater. 2011, 47, 172–177. [Google Scholar] [CrossRef]
- Knyazev, A.V.; Maczka, M.; Bulanov, E.N.; Ptak, M.; Belopolskaya, S.S. High-temperature thermal and X-ray diffraction studies, and room-temperature spectroscopic investigation of some inorganic pigments. Dye. Pigment. 2011, 91, 286–293. [Google Scholar] [CrossRef]
- Johnson, P.D.; Prener, J.S.; Kingsley, J.D. Apatite: Origin of blue color. Science 1964, 141, 1179–1180. [Google Scholar] [CrossRef]
- Reinen, D.; Lachwa, H.; Allmann, R. Colour and constitution for MnV in tetrahedral oxygen coordination. An EPR and ligand field spectroscopic investigation of MnV in apatite phases and the structure of Ba5(MnO4)3Cl. Z. Anorg. Allg. Chem. 1986, 542, 71–88. (In German) [Google Scholar] [CrossRef]
- Medina, E.A.; Li, J.; Stalick, J.K.; Subramanian, M.A. Intense turquoise colors of apatite-type compounds with Mn5+ in tetrahedral coordination. Solid State Sci. 2016, 52, 97–105. [Google Scholar] [CrossRef]
- Laha, S.; Tamilarasan, S.; Natarajan, S.; Gopalakrishnan, J. Stabilization of a tetrahedral (Mn5+O4) chromophore in ternary barium oxides as a strategy toward development of new turquoise/green-colored pigments. Inorg. Chem. 2016, 55, 3508–3514. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Sim, G.E.; Ock, J.Y.; Son, J.H.; Hasegawa, T.; Toda, K.; Bae, D.S. Discovery of novel inorganic Mn5+-doped sky-blue pigments based on Ca6BaP4O17: Crystal structure, optical and color properties, and color durability. Dye. Pigment. 2017, 139, 344–348. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, H.; Jiang, P.; Liu, L.; Cui, K.; Cao, W. Synthesis and optical properties of intense blue colors oxides based on Mn5+ in tetrahedral sites in Ba7Al2-xMnxO10+y. Ceram. Int. 2021, 47, 686–691. [Google Scholar] [CrossRef]
- Dardenne, K.; Vivien, D.; Huguenin, D. Color of Mn(V)-substituted apatites A10((B,Mn)O4)6F2, A = Ba, Sr, Ca; B = P,V. J. Solid State Chem. 1999, 146, 464–472. [Google Scholar] [CrossRef]
- Kettler, W.; Binder, M.; Franz, W.; Gabel, P.; Gauss, S.; Wilker, G.; Hempelmann, U.; Henning, R.; Kremitzl, H.-J.; Weixel, S. Colour Technology of Coatings; Vincentz Network: Hanovra, Germany, 2016. [Google Scholar]
- Wood, C.A.; Attridge, G.G.; Jacobson, R.E.; Pointer, M.R. Minimum perceptible differences in the colour reproduction of photographic prints. J. Photogr. Sci. 1991, 39, 119–127. [Google Scholar] [CrossRef]
- Hazenkamp, M.F.; Gudel, H.U.; Kuck, S.; Huber, G.; Rauw, W.; Reinen, D. Excited state absorption and laser potential of Mn5+-doped Li3PO4. Chem. Phys. Lett. 1997, 265, 264–270. [Google Scholar] [CrossRef]
- Kück, S.; Schepler, K.L.; Chai, B.H.T. Evaluation of Mn5+-doped Sr5(VO4)3F as a laser material based on excited-state absorption and stimulated-emission measurements. J. Opt. Soc. Am. B 1997, 14, 957–963. [Google Scholar] [CrossRef]
- Herren, M.; Riedener, T.; Gudel, H.U.; Albrecht, C.; Kaschuba, U.; Reinen, D. Near-infrared luminescence of manganate(V)-doped phosphates and vanadates. J. Lumin. 1992, 53, 452–456. [Google Scholar] [CrossRef]
- Capobianco, J.A.; Cormier, G.; Bettinelli, M.; Moncorge, R.; Manaa, H. Near-infrared intraconfigurational luminescence spectroscopy of the Mn5+ (3d2) ion in Ca2PO4Cl, Sr5(PO4)3Cl, Ca2VO4Cl and Sr2VO4Cl. J. Lumin. 1992, 54, 1–11. [Google Scholar] [CrossRef]
- Capobianco, J.A.; Cormier, G.; Morrison, C.A.; Moncorge, R. Crystal-field analyis of Mn5+ (3d2) in Sr5(PO4)3Cl. Opt. Mater. 1992, 1, 209–216. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Zhou, X.; Delaey, M.; Wang, M.; Fu, R.; Lei, S.; Vrielinck, H.; Poelman, D. Achieving high quantum efficiency in Mn5+ activated phosphors for NIR-II deep bioimaging application. Laser Photonics Rev. 2024, 18, 2400781. [Google Scholar] [CrossRef]
- Piotrowski, W.M.; Marin, R.; Szymczak, M.; Martín Rodríguez, E.; Ortgies, D.H.; Rodríguez-Sevilla, P.; Dramićanin, M.D.; Jaque, D.; Marciniak, L. Mn5+ lifetime-based thermal imaging in the optical transparency windows through skin-mimicking tissue phantom. Adv. Opt. Mater. 2023, 11, 2202366. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Trends in luminescence thermometry. J. Appl. Phys. 2020, 128, 040902. [Google Scholar] [CrossRef]
- Bednarkiewicz, A.; Marciniak, L.; Carlos, L.D.; Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020, 12, 14405–14421. [Google Scholar] [CrossRef]
- Đačanin Far, L.; Dramićanin, M.D. Luminescence Thermometry with Nanoparticles: A Review. Nanomaterials 2023, 13, 2904. [Google Scholar] [CrossRef]
Ion | Mn5+ | V5+ | P5+ | As5+ | Si4+ |
---|---|---|---|---|---|
Radius | 33 pm | 35.5 pm | 17 pm | 33.5 pm | 26 pm |
Material | Synthesis | Structure | Color | Reference |
---|---|---|---|---|
Ba5Mn3−xMxO12Cl (M = V5+, P5+) (x = 0–3.0) | Solid-state Sol-gel process | hexagonal P63/m | White (x = 3.0) Turquoise (x = 1.5) Dark green (x = 0) | [69] |
Ba3(V1−xMnxO4)2 (0 < x ≤ 1.0) | Conventional ceramic route | hexagonal R3m | Turquoise (x = 0.10) Green (x = 0.20, 0.25) Dark green (x ≥ 0.50) | [70] |
Ba2Ti1−xMnxO4+x/2 (0 < x ≤ 0.15) Ba2Si1−xMnxO4 x = 0.10 and 0.15 | Conventional ceramic route | Ba2Ti1−xMnxO4+x/2 orthorhombic P21nb Ba2Si1−xMnxO4 orthorhombic Pmcn | Turquoise (x = 0.10, 0.15) Turquoise (x = 0.10, 0.15) | [70] |
Ba3(P1−xMnxO4)2 x = 0, 0.02, 0.05, 0.10, 0.25, 0.30, 0.40, 0.50, 0.75, 0.90, 1.00 | Conventional ceramic route | hexagonal R3m | Sky blue (x = 0.02–0.10) Turquoise blue (x = 0.25–0.40) Green and dark green (x ≥ 0.50) | [54] |
Ca6Ba(P1−xMnx)4O17 (0.005 ≤ x ≤ 0.13) | Solid-state | monoclinic C2/m (No. 12) | Sky blue color near the green | [71] |
BaAl2−xMnxO4+y (0 ≤ x ≤ 0.10) | Sol-gel process | ferroelectric phase P63 when T increase paraelectric phase P6322 | White (x = 0.05) Green blue (0.01 ≤ x ≤ 0.03) Green yellow (0.04 ≤ x ≤ 0.10) | [22] |
Ba7Al2−xMnxO10+y (0 ≤ x ≤ 0.7) | Solid-state | From cyan to ocean blue | [72] | |
Ba2In2−xMnxO5+x (x = 0.1−0.7) | Solid-state | Ba2In1.9Mn0.2O5.1 Orthorhombic Icmm Ba2In1.8Mn0.2O5.2 tetragonal I4/mcm Ba2In2−xMnxO5+x (x = 0.4, 0.5, 0.6) cubic phases Pm3m | Light yellow (x = 0) Turquoise (x = 0.1) Green (0.2, 0.3) Dark green (x ≥ 0.4) | [60] |
Ba10(P1−xMnxO4)6F2 x = (0.1–1) | Solid-state | hexagonal P63/m | Turquoise blue to dark green | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzman, S.; Dramićanin, T.; Popov, A.I.; Brik, M.G.; Dramićanin, M.D. Pigments and Near-Infrared Phosphors Based on Mn5+. Nanomaterials 2025, 15, 275. https://doi.org/10.3390/nano15040275
Kuzman S, Dramićanin T, Popov AI, Brik MG, Dramićanin MD. Pigments and Near-Infrared Phosphors Based on Mn5+. Nanomaterials. 2025; 15(4):275. https://doi.org/10.3390/nano15040275
Chicago/Turabian StyleKuzman, Sanja, Tatjana Dramićanin, Anatoli I. Popov, Mikhail G. Brik, and Miroslav D. Dramićanin. 2025. "Pigments and Near-Infrared Phosphors Based on Mn5+" Nanomaterials 15, no. 4: 275. https://doi.org/10.3390/nano15040275
APA StyleKuzman, S., Dramićanin, T., Popov, A. I., Brik, M. G., & Dramićanin, M. D. (2025). Pigments and Near-Infrared Phosphors Based on Mn5+. Nanomaterials, 15(4), 275. https://doi.org/10.3390/nano15040275