Nanomaterials for Zinc Batteries—Aerogels
Abstract
:1. Introduction
2. Aerogel Preparation Methods
2.1. Sol–Gel Method
2.2. Supercritical Drying Method
2.3. Gel Injection Moulding Method
2.4. Three-Dimensional Printing
Preparation Method | Potential Applications in Zinc Batteries |
---|---|
Sol–Gel Method | 1. Ideal for synthesizing electrode materials with high porosity and surface area. 2. Suitable for developing zinc–air battery catalysts. |
Supercritical Drying Method | 1. Suitable for preparing high-performance electrode materials that require precise control over porosity and structure. 2. Can be used in zinc-ion capacitors for improved ion transport. |
Gel Casting Method | 1. Useful for fabricating customized electrode structures for zinc batteries. 2. Can be applied in the production of zinc-based flow batteries with specific geometries. |
3D Printing | 1. Enables the fabrication of intricate electrode architectures for zinc batteries. 2. Facilitates the development of high-performance zinc-ion batteries with tailored porosity and surface area. |
3. Application of Aerogel in Zinc-Ion Batteries
3.1. Anode Material Modification
3.2. High Performance Cathodes
3.3. Highly Efficient Electrocatalysts
4. Summary and Outlook
Funding
Conflicts of Interest
References
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A Global Inventory of Photovoltaic Solar Energy Generating Units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef]
- Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H.; et al. Grand Challenges in the Science of Wind Energy. Science 2019, 366, eaau2027. [Google Scholar] [CrossRef]
- Ding, L.; Wang, L.; Gao, J.; Yan, T.; Li, H.; Mao, J.; Song, F.; Fedotov, S.; Chang, L.-Y.; Li, N.; et al. Facile Zn2+ Desolvation Enabled by Local Coordination Engineering for Long-Cycling Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2301648. [Google Scholar] [CrossRef]
- Wang, H.; Du, H.; Zhao, R.; Zhu, Z.; Qie, L.; Fu, J.; Huang, Y. Stable Zn Metal Anodes Enabled by Restricted Self-Diffusion Via Succinimide Surfactant. Adv. Funct. Mater. 2023, 33, 2213803. [Google Scholar] [CrossRef]
- Lionetto, F.; Arianpouya, N.; Bozzini, B.; Maffezzoli, A.; Nematollahi, M.; Mele, C. Advances in Zinc-Ion Structural Batteries. J. Energy Storage 2024, 84, 110849. [Google Scholar] [CrossRef]
- Zhou, X.; Ruan, T.; Xu, J.; Li, C.; Huang, S.; Zhou, J.; Lu, S.; Song, R.; Li, R. Host-Design Strategies of Zinc Anodes for Aqueous Zinc-Ion Batteries. RSC Adv. 2024, 14, 23023–23036. [Google Scholar] [CrossRef] [PubMed]
- Upreti, B.B.; Kamboj, N.; Dey, R.S. Advancing Zinc Anodes: Strategies for Enhanced Performance in Aqueous Zinc-Ion Batteries. Small 2024, 2408138. [Google Scholar] [CrossRef]
- Zhu, J.; Tie, Z.; Bi, S.; Niu, Z. Towards More Sustainable Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202403712. [Google Scholar] [CrossRef]
- Feng, Z.; Feng, Y.; Fan, F.; Deng, D.; Dong, H.; Liu, S.; Kang, L.; Jun, S.C.; Wang, L.; Zhu, J.; et al. Functionalization Design of Zinc Anode for Advanced Aqueous Zinc-Ion Batteries. SusMat 2024, 4, e184. [Google Scholar] [CrossRef]
- Ajay Rakkesh, R.; Shalini, S.; Tharani, S.; Durgalakshmi, D.; Balakumar, S. Possibilities and Challenges of Cathode Materials for Zn-Ion Batteries. Energy Adv. 2024, 3, 676–688. [Google Scholar] [CrossRef]
- Thapliyal, P.C.; Singh, K. Aerogels as Promising Thermal Insulating Materials: An Overview. J. Mater. 2014, 2014, 127049. [Google Scholar] [CrossRef]
- Sun, S.; Yan, Q.; Wu, M.; Zhao, X. Carbon Aerogel Based Materials for Secondary Batteries. Sustain. Mater. Technol. 2021, 30, e00342. [Google Scholar] [CrossRef]
- Pierre, A.C.; Pajonk, G.M. Chemistry of Aerogels and Their Applications. Chem. Rev. 2002, 102, 4243–4266. [Google Scholar] [CrossRef]
- Rai, N.; Chauhan, I. Multifunctional Aerogels: A Comprehensive Review on Types, Synthesis and Applications of Aerogels. J. Sol-Gel Sci. Technol. 2023, 105, 324–336. [Google Scholar] [CrossRef]
- He, H.; Liu, Q.; Zhang, S.-D.; Chen, H.-B. Fabrication and Properties of Polyimide/Carbon Fiber Aerogel and the Derivative Carbon Aerogel. Ind. Eng. Chem. Res. 2022, 61, 3952–3961. [Google Scholar] [CrossRef]
- Smirnova, I.; Gurikov, P. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels. Ann. Rev. Chem. Biomol. Eng. 2017, 8, 307–334. [Google Scholar] [CrossRef]
- Hüsing, N.; Schubert, U. Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Ziegler, C.; Wolf, A.; Liu, W.; Herrmann, A.-K.; Gaponik, N.; Eychmüller, A. Modern Inorganic Aerogels. Angew. Chem. Int. Ed. 2017, 56, 13200–13221. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, Z.; Zhao, N.; Xu, J. Aerogels Derived from Polymer Nanofibers and Their Applications. Macromol. Rapid Commun. 2018, 39, 1700724. [Google Scholar] [CrossRef] [PubMed]
- Dilamian, M.; Joghataei, M.; Ashrafi, Z.; Bohr, C.; Mathur, S.; Maleki, H. From 1D Electrospun Nanofibers to Advanced Multifunctional Fibrous 3D Aerogels. Appl. Mater. Today 2021, 22, 100964. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, S.; Liu, S.; Liu, Y. Study of Aerogel-Modified Recycled Polyurethane Nanocomposites. Nanomaterials 2023, 13, 2583. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zhao, X.; Lv, J.; He, X.; Chen, M.; Tan, W.; Yang, W.; Zeng, K.; Hu, J.; Yang, G. Ultrasound-Assisted Freeze-Drying Strategy to Enhance Nanoparticle Dispersion in Aerogels: A Case Study on Polyimide/Silica Nanocomposite Aerogel. Polym. Eng. Sci. 2023, 63, 3819–3830. [Google Scholar] [CrossRef]
- Paul, J.; Ahankari, S.S. Nanocellulose-Based Aerogels for Water Purification: A Review. Carbohydr. Polym. 2023, 309, 120677. [Google Scholar] [CrossRef] [PubMed]
- Shuaibu, A.D.; Shah, S.S.; Alzahrani, A.S.; Aziz, M.A. Advancing Gel Polymer Electrolytes for Next-Generation High-Performance Solid-State Supercapacitors: A Comprehensive Review. J. Energy Storage 2025, 107, 114851. [Google Scholar] [CrossRef]
- Pang, H.; Sun, P.; Gong, H.; Zhang, N.; Cao, J.; Zhang, R.; Luo, M.; Li, Y.; Sun, G.; Li, Y.; et al. Wood-Derived Bimetallic and Heteroatomic Hierarchically Porous Carbon Aerogel for Rechargeable Flow Zn–Air Batteries. ACS Appl. Mater. Interfaces 2021, 13, 39458–39469. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Eisenreich, F.; Tomović, Ž. Aerogel-To-Sol-To-Aerogel (ASA) Process for Recycling, Repairing, Reprogramming of High-Performance Organic Aerogels. Adv. Funct. Mater. 2024, 34, 2314447. [Google Scholar] [CrossRef]
- Hosseini, M.; Rahmanian, V.; Pirzada, T.; Frick, N.; Krissanaprasit, A.; Khan, S.A.; LaBean, T.H. DNA Aerogels and DNA-Wrapped CNT Aerogels for Neuromorphic Applications. Mater. Today Bio 2022, 16, 100440. [Google Scholar] [CrossRef] [PubMed]
- Faivre, A.; Duffours, L.; Colombel, P.; Despetis, F. Mechanical Behaviour of Aerogels and Composite Aerogels Submitted to Specific Penetration Tests. J. Sol-Gel Sci. Technol. 2019, 90, 67–75. [Google Scholar] [CrossRef]
- Shen, Y.; Du, A.; Li, X.; Huang, X.; Ye, J.; Xie, Z.; Wu, X.; Shen, J.; Zhou, B. Preparation and Optimization of Aerogel Flyer-Plates with Graded Density. Mater. Des. 2016, 110, 225–232. [Google Scholar] [CrossRef]
- Sivaraman, D.; Siqueira, G.; Maurya, A.K.; Zhao, S.; Koebel, M.M.; Nyström, G.; Lattuada, M.; Malfait, W.J. Superinsulating Nanocellulose Aerogels: Effect of Density and Nanofiber Alignment. Carbohydr. Polym. 2022, 292, 119675. [Google Scholar] [CrossRef]
- Zhu, C.-Y.; Li, Z.-Y.; Pang, H.-Q.; Pan, N. Numerical Modeling of the Gas-Contributed Thermal Conductivity of Aerogels. Int. J. Heat Mass Transf. 2019, 131, 217–225. [Google Scholar] [CrossRef]
- Groult, S.; Budtova, T. Thermal Conductivity/Structure Correlations in Thermal Super-Insulating Pectin Aerogels. Carbohydr. Polym. 2018, 196, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Chen, Z.; Cheng, Q.; Xiao, M.; Bae, G.; Liang, D.; Hasan, T. Controlling Surface Porosity of Graphene-Based Printed Aerogels. npj 2D Mater. Appl. 2022, 6, 34. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Pachfule, P.; Li, S.; Ye, M.-Y.; Schmidt, J.; Thomas, A. Ultralight Covalent Organic Framework/Graphene Aerogels with Hierarchical Porosity. Nat. Commun. 2020, 11, 4712. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, H.; Lv, T.; Xu, Y.; Zhou, X.; Zhang, L. High-Energy Laser Protection Performance of Fibrous Felt-Reinforced Aerogels with Hierarchical Porous Architectures. ACS Appl. Mater. Interfaces 2024, 16, 25568–25580. [Google Scholar] [CrossRef]
- Ganesan, K.; Dennstedt, A.; Barowski, A.; Ratke, L. Design of Aerogels, Cryogels and Xerogels of Cellulose with Hierarchical Porous Structures. Mater. Des. 2016, 92, 345–355. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, X.; Wu, X.; Liu, L.; Guo, H.; Xu, K.; Zhang, L.; Du, G. Preparation of Nanocellulose-Based Aerogel and Its Research Progress in Wastewater Treatment. Molecules 2023, 28, 3541. [Google Scholar] [CrossRef]
- Ruihao, T.; Huihao, W.; Yadong, C.; Srinivasakannan, C.; Xinhui, D.; Xin, W. Flexible Preparation of Nanoporous SiO2 Aerogel as Novel Adsorbent for Efficient Adsorption of Zearalenone. J. Environ. Chem. Eng. 2023, 11, 109828. [Google Scholar] [CrossRef]
- Lu, W.; Xie, C.; Zhang, H.; Li, X. Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries. ChemSusChem 2018, 11, 3996–4006. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc Dendrite Growth and Inhibition Strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, S.; Xu, Z.; Liu, Z.; Guo, J.; Yin, J.; Xu, P.; Zhang, N.; Zhang, W.; Alshareef, H.N.; et al. Metal Oxide Aerogels: A New Horizon for Stabilizing Anodes in Rechargeable Zinc Metal Batteries. Adv. Energy Mater. 2023, 13, 2300331. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Li, L.; Chen, R. Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn-Ion Batteries. Adv. Mater. 2022, 34, 2106897. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, L.; Yuan, Y.; Zhong, L.; Chen, Z.; Chi, X.; Lu, H.; Chen, Z.; Zou, R.; Li, T.; et al. Zinc-Air Batteries: An Iron-Decorated Carbon Aerogel for Rechargeable Flow and Flexible Zn–Air Batteries (Adv. Mater. 32/2020). Adv. Mater. 2020, 32, 2070241. [Google Scholar] [CrossRef]
- Shahriari, M.H.; Atai, M.; Zandi, M.; Shokrollahi, P.; Solhi, L. Preparation and Characterization of Eugenol-Loaded Oligochitosan Nanoparticles through Sol–Gel and Emulsion/Sol–Gel Methods. Polym. Bull. 2018, 75, 3035–3051. [Google Scholar] [CrossRef]
- Predoana, L.; Atkinson, I.; Karaj, D.A.; Odhiambo, V.O.; Bakos, L.P.; Nagyné Kovács, T.; Pandele-Cusu, J.; Petrescu, S.; Rusu, A.; Szilágyi, I.M.; et al. Comparative Study of the Thermal Behavior of Sr–Cu–O Gels Obtained by Sol–Gel and Microwave-Assisted Sol–Gel Method. J. Therm. Anal. Calorim. 2021, 143, 2893–2900. [Google Scholar] [CrossRef]
- Menshutina, N.; Tsygankov, P.; Khudeev, I.; Lebedev, A. Intensification Methods of Supercritical Drying for Aerogels Production. Dry. Technol. 2021, 40, 1278–1291. [Google Scholar] [CrossRef]
- Shahzamani, M.; Bagheri, R.; Masoomi, M.; Haghgoo, M.; Dourani, A. Effect of Drying Method on the Structure and Porous Texture of Silica-Polybutadiene Hybrid Gels: Supercritical vs. Ambient Pressure Drying. J. Non-Cryst. Solids 2017, 460, 119–124. [Google Scholar] [CrossRef]
- Han, L.; Li, X.; Li, F.; Zhang, H.; Liu, X.; Li, G.; Jia, Q.; Zhang, S. In-Situ Preparation of SiC Reinforced Si3N4 Ceramics Aerogels by Foam-Gelcasting Method. Ceram. Int. 2022, 48, 1166–1172. [Google Scholar] [CrossRef]
- Foratirad, H.; Maragheh, M.G.; Baharvandi, H.R. Fabrication of Porous Titanium Carbide Ceramics by Gelcasting Process. Rare Met. 2022, 41, 3220–3227. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ghaffarkhah, A.; Hosseini, H.; Arjmand, M. 3D-Printed Interfacially Jammed Emulsion Aerogels. ACS Appl. Mater. Interfaces 2024, 16, 46923–46936. [Google Scholar] [CrossRef]
- Joo, P.; Yao, Y.; Teo, N.; Jana, S.C. Modular Aerogel Brick Fabrication via 3D-Printed Molds. Addit. Manuf. 2021, 46, 102059. [Google Scholar] [CrossRef]
- Cai, X.; Tan, G.; Deng, Z.; Liu, J.; Gui, D. Preparation of Hierarchical Porous Carbon Aerogels by Microwave Assisted Sol-Gel Process for Supercapacitors. Polymers 2019, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liao, Z.; Xing, C.; Yuan, Z.; Zhang, R.; Zhu, H.; Li, J. Preparation of SnO2/SiO2 Nanocomposites by Sol-Gel Method for Enhancing the Gas Sensing Performance to Triethylamine. J. Alloys Compd. 2022, 893, 162189. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Simonenko, E.P.; Simonenko, N.P.; Bukunov, K.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Gas-Sensing Properties of Nanostructured CeO2-xZrO2 Thin Films Obtained by the Sol-Gel Method. J. Alloys Compd. 2019, 773, 1023–1032. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, W.; Huang, R.; Zhang, Y.; Jia, C.; Zhao, H.; Chen, W.; Xue, Y. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared via Two Different Drying Techniques. Polymers 2020, 12, 2583. [Google Scholar] [CrossRef] [PubMed]
- Demina, T.S.; Minaev, N.V.; Akopova, T.A. Polysaccharide-Based Aerogels Fabricated via Supercritical Fluid Drying: A Systematic Review. Polym. Bull. 2024, 81, 13331–13356. [Google Scholar] [CrossRef]
- Men’shutina, N.V.; Katalevich, A.M.; Smirnova, I. Preparation of Silica-Based Aerogels by Supercritical Drying. Russ. J. Phys. Chem. B 2014, 8, 973–979. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Pang, T.; Liu, H.; Wang, C.; Zhou, L.; He, F. Preparation and Characterization of Nanofiber- and Nanorod-like Boehmite Aerogels via Ammonia Vapor Gelation Method. J. Sol-Gel Sci. Technol. 2022, 104, 300–310. [Google Scholar] [CrossRef]
- Han, L.; Dong, L.; Li, F.; Duan, H.; Zhang, H.; Li, G.; Jia, Q.; Zhang, S. Preparation of Si3N4-BCxN-TiN Composite Ceramic Aerogels via Foam-Gelcasting. J. Eur. Ceram. Soc. 2022, 42, 2699–2706. [Google Scholar] [CrossRef]
- Che, N.; Liu, N.; Li, Y.; Li, C.; Liu, Y.; Li, C. Three Dimensional BC/rGA Aerogel: Preparation, Characterization, and Adsorption of Cr(VI). Biochar 2022, 4, 65. [Google Scholar] [CrossRef]
- Chen, Y.; Shafiq, M.; Liu, M.; Morsi, Y.; Mo, X. Advanced Fabrication for Electrospun Three-Dimensional Nanofiber Aerogels and Scaffolds. Bioact. Mater. 2020, 5, 963–979. [Google Scholar] [CrossRef] [PubMed]
- Gevorkian, A.; Morozova, S.M.; Kheiri, S.; Khuu, N.; Chen, H.; Young, E.; Yan, N.; Kumacheva, E. Actuation of Three-Dimensional-Printed Nanocolloidal Hydrogel with Structural Anisotropy. Adv. Funct. Mater. 2021, 31, 2010743. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Medarametla, S.P.; Li, H.; Zhou, C.; Lin, D. 3D Printing of Graphene Aerogels. Small 2016, 12, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Hrubesh, L.W. Aerogel Applications. J. Non-Cryst. Solids 1998, 225, 335–342. [Google Scholar] [CrossRef]
- Ulker, Z.; Erkey, C. An Emerging Platform for Drug Delivery: Aerogel Based Systems. J. Control. Release 2014, 177, 51–63. [Google Scholar] [CrossRef]
- Tétreault, N.; Grätzel, M. Novel Nanostructures for next Generation Dye-Sensitized Solar Cells. Energy Environ. Sci. 2012, 5, 8506–8516. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Y.; Ma, Y.; Ruan, Y.; He, J.; Xu, H.; Zhang, Z.; He, G.; Chen, H. Suppression of Zinc Dendrite Growth by Enhanced Polyacrylamide Gel Electrolytes in Zinc-Ion Battery. Chem. Asian J. 2024, 19, e202400812. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, Z.; Gao, X.; Dong, H.; Zhao, X.; He, G.; Yang, H. In-Situ Self-Respiratory Solid-to-Hydrogel Electrolyte Interface Evoked Well-Distributed Deposition on Zinc Anode for Highly Reversible Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2024, 64, e202415251. [Google Scholar] [CrossRef]
- Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries. Adv. Energy Mater. 2021, 11, 2003065. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, C.; Zhang, Q.; Wu, T.; Xie, C.; Wang, H.; Tang, Y.; Ji, X.; Wang, H. Bulk-Phase Reconstruction Enables Robust Zinc Metal Anodes for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202308017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, B.; Ling, L.; Lu, Y.; Zou, T.; Cao, B.; Zhang, T. Using Silica Aerogel Layers for the Stabilization of Zn Metal Anodes in Zn-Ion Batteries. ChemistrySelect 2024, 9, e202400620. [Google Scholar] [CrossRef]
- Li, C.; Shyamsunder, A.; Hoane, A.G.; Long, D.M.; Kwok, C.Y.; Kotula, P.G.; Zavadil, K.R.; Gewirth, A.A.; Nazar, L.F. Highly Reversible Zn Anode with a Practical Areal Capacity Enabled by a Sustainable Electrolyte and Superacid Interfacial Chemistry. Joule 2022, 6, 1103–1120. [Google Scholar] [CrossRef]
- Miao, Z.; Liu, Q.; Wei, W.; Zhao, X.; Du, M.; Li, H.; Zhang, F.; Hao, M.; Cui, Z.; Sang, Y.; et al. Unveiling Unique Steric Effect of Threonine Additive for Highly Reversible Zn Anode. Nano Energy 2022, 97, 107145. [Google Scholar] [CrossRef]
- Du, W.; Ang, E.H.; Yang, Y.; Zhang, Y.; Ye, M.; Li, C.C. Challenges in the Material and Structural Design of Zinc Anode towards High-Performance Aqueous Zinc-Ion Batteries. Energy Environ. Sci. 2020, 13, 3330–3360. [Google Scholar] [CrossRef]
- Yesibolati, N.; Umirov, N.; Koishybay, A.; Omarova, M.; Kurmanbayeva, I.; Zhang, Y.; Zhao, Y.; Bakenov, Z. High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications. Electrochim. Acta 2015, 152, 505–511. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable Aqueous Zinc-Manganese Dioxide Batteries with High Energy and Power Densities. Nat. Commun. 2017, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Xu, C.; Wu, C.; Dong, L.; Li, J.; Kang, F. Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochim. Acta 2017, 229, 422–428. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, T.; Fu, N.; Yang, Z. Manganese-Based MOF Interconnected Carbon Nanotubes as a High-Performance Cathode for Rechargeable Aqueous Zinc-Ion Batteries. J. Energy Storage 2024, 76, 109873. [Google Scholar] [CrossRef]
- Li, X.; Xie, X.; Lv, R.; Na, B.; Wang, B.; He, Y. Nanostructured Polypyrrole Composite Aerogels for a Rechargeable Flexible Aqueous Zn-Ion Battery with High Rate Capabilities. Energy Technol. 2019, 7, 1801092. [Google Scholar] [CrossRef]
- Jin, Y.; Zou, L.; Liu, L.; Engelhard, M.H.; Patel, R.L.; Nie, Z.; Han, K.S.; Shao, Y.; Wang, C.; Zhu, J.; et al. Joint Charge Storage for High-Rate Aqueous Zinc–Manganese Dioxide Batteries. Adv. Mater. 2019, 31, 1900567. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.G.; Turney, D.; Huang, J.; Wei, X.; Banerjee, S. Breaking the 2 V Barrier in Aqueous Zinc Chemistry: Creating 2.45 and 2.8 V MnO2–Zn Aqueous Batteries. ACS Energy Lett. 2019, 4, 2144–2146. [Google Scholar] [CrossRef]
- Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y.; et al. High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnO Nanorods Coated by MOF-Derived N-Doped Carbon. Adv. Energy Mater. 2018, 8, 1801445. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. Small 2018, 14, 1703850. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Duan, H.; Xie, S.; Dai, R.; Rong, J.; Kang, F.; Dong, L. Aerogel-Structured MnO2 Cathode Assembled by Defect-Rich Ultrathin Nanosheets for Zinc-Ion Batteries. Chem. Eng. J. 2022, 441, 136008. [Google Scholar] [CrossRef]
- Pan, Y.; Ma, X.; Wang, M.; Yang, X.; Liu, S.; Chen, H.-C.; Zhuang, Z.; Zhang, Y.; Cheong, W.-C.; Zhang, C.; et al. Construction of N, P Co-Doped Carbon Frames Anchored with Fe Single Atoms and Fe2P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Adv. Mater. 2022, 34, 2203621. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, L.; Cao, D. Nitrogen and Fluorine-Codoped Porous Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. ACS Appl. Mater. Interfaces 2017, 9, 32859–32867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yuan, Y.; Gao, L.; Zeng, G.; Li, M.; Huang, H. Stabilizing Pt-Based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies. Adv. Mater. 2021, 33, 2006494. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Shen, M.; Duan, C.; Zhang, L.; Zhu, J.; Ni, Y. 3D Hierarchical Porous Carbon Aerogel Electrocatalysts Based on Cellulose/Aramid Nanofibers and Application in High-Performance Zn–Air Batteries. ACS Appl. Energy Mater. 2022, 5, 15146–15154. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Adv. Mater. 2017, 29, 1606459. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Huang, Y.; Pi, Y.; Yang, W.; Wu, L.; Luo, Y.; Chen, Z.; Chen, Y.; Shi, G.; Chi, X.; et al. Preparation of Nanocellulose-Based Nitrogen-Doped Carbon Aerogel Electrocatalysts through Hydrothermal Pretreatment for Zinc–Air Batteries. New J. Chem. 2024, 48, 5582–5588. [Google Scholar] [CrossRef]
- Tang, R.; Yuan, X.; Yang, W.; Zhang, H.; Lu, Y.; Zhang, R. Fe–N4 and Fe7Co3 Nanoalloy Dual-Site Modulation by Skeleton Defect in N-Doped Graphene Aerogel for Enhanced Bifunctional Oxygen Electrocatalyst in Zinc-Air Battery. Small 2025, 2410264. [Google Scholar] [CrossRef]
- Lv, R.; Wang, H.; Yu, H.; Peng, F. Controllable Preparation of Holey Graphene and Electrocatalytic Performance for Oxygen Reduction Reaction. Electrochim. Acta 2017, 228, 203–213. [Google Scholar] [CrossRef]
- Huang, L.-B.; Zhao, L.; Zhang, Y.; Luo, H.; Zhang, X.; Zhang, J.; Pan, H.; Hu, J.-S. Engineering Carbon-Shells of M@NC Bifunctional Oxygen Electrocatalyst towards Stable Aqueous Rechargeable Zn-Air Batteries. Chem. Eng. J. 2021, 418, 129409. [Google Scholar] [CrossRef]
- Dai, S.; Chou, J.-P.; Wang, K.-W.; Hsu, Y.-Y.; Hu, A.; Pan, X.; Chen, T.-Y. Platinum-Trimer Decorated Cobalt-Palladium Core-Shell Nanocatalyst with Promising Performance for Oxygen Reduction Reaction. Nat. Commun. 2019, 10, 440. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q. Research and Application Progress of Aerogel Materials in the Field of Batteries and Supercapacitors. Energies 2024, 17, 4981. [Google Scholar] [CrossRef]
- Feng, G.; Li, Z.; Mi, L.; Zheng, J.; Feng, X.; Chen, W. Polypropylene/Hydrophobic-Silica-Aerogel-Composite Separator Induced Enhanced Safety and Low Polarization for Lithium-Ion Batteries. J. Power Sources 2018, 376, 177–183. [Google Scholar] [CrossRef]
- Yang, W.-J.; Wei, C.-X.; Yuen, A.C.Y.; Lin, B.; Yeoh, G.H.; Lu, H.-D.; Yang, W. Fire-Retarded Nanocomposite Aerogels for Multifunctional Applications: A Review. Compos. Part B Eng. 2022, 237, 109866. [Google Scholar] [CrossRef]
- Nargatti, K.I.; Subhedar, A.R.; Ahankari, S.S.; Grace, A.N.; Dufresne, A. Nanocellulose-Based Aerogel Electrodes for Supercapacitors: A Review. Carbohydr. Polym. 2022, 297, 120039. [Google Scholar] [CrossRef]
Preparation Method | Characteristics | Advantages | Limitations |
---|---|---|---|
Sol–gel method | Through hydrolysis and polycondensation reactions, a gel is formed, which is then dried to obtain an aerogel. | Uniform at the molecular level. Easy to dope. Low-temperature synthesis. | High cost. Time-consuming. Prone to shrinkage and cracking. |
Supercritical drying method | Utilizes the properties of supercritical fluids to dry the gel, avoiding structural damage. | Maintains high porosity. Complete structure. Shorter drying time. | High equipment cost. Complex operation. |
Gel casting method | The gel is injected into a mold, and after curing and drying, an aerogel with a specific shape is obtained. | Can prepare complex shapes. Simple process. Suitable for large-scale production. | High requirements for mold design. Requires precise control of the process. |
3D printing | Manufacturing three-dimensional aerogel structures by printing materials layer by layer. | Customizable complex structures. Efficient preparation. Suitable for various applications. | Limited types of ink. Complex design of hierarchical pore structures. Printing precision needs improvement. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, H.; Li, Z.; Jia, Q.; Wang, J.; Chen, L. Nanomaterials for Zinc Batteries—Aerogels. Nanomaterials 2025, 15, 194. https://doi.org/10.3390/nano15030194
Ruan H, Li Z, Jia Q, Wang J, Chen L. Nanomaterials for Zinc Batteries—Aerogels. Nanomaterials. 2025; 15(3):194. https://doi.org/10.3390/nano15030194
Chicago/Turabian StyleRuan, Hulong, Zeyuan Li, Qixing Jia, Junjun Wang, and Lina Chen. 2025. "Nanomaterials for Zinc Batteries—Aerogels" Nanomaterials 15, no. 3: 194. https://doi.org/10.3390/nano15030194
APA StyleRuan, H., Li, Z., Jia, Q., Wang, J., & Chen, L. (2025). Nanomaterials for Zinc Batteries—Aerogels. Nanomaterials, 15(3), 194. https://doi.org/10.3390/nano15030194