Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials
Abstract
1. Introduction
2. Structure Design
3. Results
3.1. Reflection and VD Analyses
3.2. Structure Optimization for Giant VD
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonner, W.A. The Origin and Amplification of Biomolecular Chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef]
- Raghu, S.; Haldane, F.D.M. Analogs of Quantum-Hall-Effect Edge States in Photonic Crystals. Phys. Rev. A 2008, 78, 033834. [Google Scholar] [CrossRef]
- Luisi, P.L. The Emergence of Life: From Chemical Origins to Synthetic Biology; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Chen, W.; Bian, A.; Agarwal, A.; Liu, L.; Shen, H.; Wang, L.; Xu, C.; Kotov, N.A. Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials. Nano Lett. 2009, 9, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, M.; Schaf, M. Three-Dimensional Chiral Plasmonic Oligomers. Nano Lett. 2012, 12, 2542–2547. [Google Scholar] [CrossRef]
- Ðorđević, L.; Arcudi, F.; D’Urso, A.; Cacioppo, M.; Micali, N.; Bürgi, T.; Purrello, R.; Prato, M. Design Principles of Chiral Carbon Nanodots Help Convey Chirality from Molecular to Nanoscale Level. Nat. Commun. 2018, 9, 3442. [Google Scholar] [CrossRef]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.-M.; Högele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Valev, V.K.; Baumberg, J.J.; Sibilia, C.; Verbiest, T. Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook. Adv. Mater. 2013, 25, 2517–2534. [Google Scholar] [CrossRef]
- Davis, M.S.; Zhu, W.; Lee, J.K.; Lezec, H.J.; Agrawal, A. Microscopic Origin of the Chiroptical Response of Optical Media. Sci. Adv. 2019, 5, eaav8262. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, K.; Cui, Y.; Zhong, J.; Zhang, H.; Jiang, Y. Design and simulation of a GST-based metasurface with strong and switchable circular dichroism. Opt. Lett. 2022, 47, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Peng, K.; Jiang, H.; Li, W.; Zhao, W. Multifunctional Metasurfaces for Switchable Polarization Selectivity and Absorption. Opt. Express 2022, 30, 20554. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gao, L.; Gao, W.; Ge, C.; Du, X.; Li, Z.; Yang, Y.; Niu, G.; Tang, J. Circularly Polarized Light Detection Using Chiral Hybrid Perovskite. Nat. Commun. 2019, 10, 1927. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, K.; Cui, Y.; Xie, Z.; Zhang, H.; Jiang, Y.; Zhao, W.; Yuan, X. Giant and Reversible Circular Dichroism Based on Phase Change Materials for Near-Field Image Display. J. Opt. 2023, 25, 065101. [Google Scholar] [CrossRef]
- Djordjevic, I.B. Deep-Space and near-Earth Optical Communications by Coded Orbital Angular Momentum (OAM) Modulation. Opt. Express 2011, 19, 14277. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-Dimensional Chiral Microstructures Fabricated by Structured Optical Vortices in Isotropic Material. Light Sci. Appl. 2017, 6, e17011. [Google Scholar] [CrossRef]
- Liu, S.; Ni, J.; Zhang, C.; Wang, X.; Cao, Y.; Wang, D.; Ji, S.; Pan, D.; Li, R.; Wu, H.; et al. Tailoring Optical Vortical Dichroism with Stereometamaterials. Laser Photonics Rev. 2022, 16, 2100518. [Google Scholar] [CrossRef]
- Kong, X.; Besteiro, L.V.; Wang, Z.; Govorov, A.O. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress. Adv. Mater. 2020, 32, 1801790. [Google Scholar] [CrossRef]
- Rouxel, J.R.; Rösner, B.; Karpov, D.; Bacellar, C.; Mancini, G.F.; Zinna, F.; Kinschel, D.; Cannelli, O.; Oppermann, M.; Svetina, C.; et al. Hard X-Ray Helical Dichroism of Disordered Molecular Media. Nat. Photonics 2022, 16, 570–574. [Google Scholar] [CrossRef]
- Dai, N.; Liu, S.; Ren, Z.; Cao, Y.; Ni, J.; Wang, D.; Yang, L.; Hu, Y.; Li, J.; Chu, J.; et al. Robust Helical Dichroism on Microadditively Manufactured Copper Helices via Photonic Orbital Angular Momentum. ACS Nano 2023, 17, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.; Khonina, S.; Kuchmizhak, A. Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale. Prog. Quantum Electron. 2023, 88, 100459. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Orbital angular momentum of twisted light: Chirality and optical activity. J. Phys. Photonics 2021, 3, 022007. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital Angular Momentum: Origins, Behavior and Applications. Adv. Opt. Photon 2011, 3, 161. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin–Orbit Interactions of Light. Nat. Photon 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving Enantiomers Using the Optical Angular Momentum of Twisted Light. Sci. Adv. 2016, 2, e1501349. [Google Scholar] [CrossRef]
- Kerber, R.M.; Fitzgerald, J.M.; Xiao, X.; Oh, S.S.; Maier, S.A.; Giannini, V.; Reiter, D.E. Interaction of an Archimedean Spiral Structure with Orbital Angular Momentum Light. New J. Phys. 2018, 20, 095005. [Google Scholar] [CrossRef]
- Kerber, R.M.; Fitzgerald, J.M.; Reiter, D.E.; Oh, S.S.; Hess, O. Reading the Orbital Angular Momentum of Light Using Plasmonic Noantennas. ACS Photonics 2017, 4, 891–896. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, G.; Bian, W.; Dong, B.; Fang, Y. Orbital Angular Momentum Dichroism Caused by the Interaction of Electric and Magnetic Dipole Moments and the Geometrical Asymmetry of Chiral Metal Nanoparticles. Phys. Rev. A 2020, 102, 033525. [Google Scholar] [CrossRef]
- Forbes, K.A.; Jones, G.A. Optical vortex dichroism in chiral particles. Phys. Rev. A 2021, 103, 053515. [Google Scholar] [CrossRef]
- Hu, H.; Gan, Q.; Zhan, Q. Generation of a Nondiffracting Superchiral Optical Needle for Circular Dichroism Imaging of Sparse Subdiffraction Objects. Phys. Rev. Lett. 2019, 122, 223901. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, S.; Tao, Y.; Wang, X.; Ni, J.; Wang, C.; Zheng, X.; Li, J.; Hu, Y.; Wu, D.; et al. Photonic Orbital Angular Momentum Dichroism on Three-Dimensional Chiral Oligomers. ACS Photonics 2023, 10, 1873–1881. [Google Scholar] [CrossRef]
- Ni, J.; Liu, S.; Wu, D.; Qiu, C.-W. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl. Acad. Sci. USA 2021, 118, e2020055118. [Google Scholar] [CrossRef]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Peng, K.; Li, Z.-Y.; Liang, W. Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials. Nanomaterials 2025, 15, 189. https://doi.org/10.3390/nano15030189
Luo S, Peng K, Li Z-Y, Liang W. Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials. Nanomaterials. 2025; 15(3):189. https://doi.org/10.3390/nano15030189
Chicago/Turabian StyleLuo, Shiqi, Kangzhun Peng, Zhi-Yuan Li, and Wenyao Liang. 2025. "Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials" Nanomaterials 15, no. 3: 189. https://doi.org/10.3390/nano15030189
APA StyleLuo, S., Peng, K., Li, Z.-Y., & Liang, W. (2025). Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials. Nanomaterials, 15(3), 189. https://doi.org/10.3390/nano15030189