Bubbles in 2D Materials: Formation Mechanisms, Impacts, and Removal Strategies for Next-Generation Electronic Devices
Abstract
1. Introduction

2. Formation and Characteristics of Interfacial Bubbles
2.1. Fabrication of 2D Materials

2.2. Construction of vdW Heterostructures and Bubble Formation
2.3. Morphology and Chemical Composition of Bubbles

3. Bubble Visualization Techniques
3.1. OM Method
3.2. AFM Method
3.3. TEM Method
3.4. Spectroscopic Method

4. Effects of Bubbles
4.1. Mechanical Reliability
4.2. Electrical Transport Properties
4.3. Thermal Transport
4.4. Optical Properties

5. Bubble Removal and Interface Cleaning Strategies
| Method | Principles | Advantages | Limitations | References |
|---|---|---|---|---|
| Thermal annealing | Heating drives interfacial bubbles to migrate and coalesce | Simple process; scalable; effective for most material systems | High temperature may damage materials or substrates; dependent on thermal stability | [99,100,101,102,103,104] |
| Chemical-assisted | Solvent wetting, gas exchange, or chemical decomposition of interfacial residues | Mild conditions; compatible with flexible substrates and sensitive devices | Possible solvent residues; limited effect on large sealed bubbles | [19,23,77,105,106,107,108,109,110,111] |
| AFM | AFM tip applies localized force to move and remove bubbles | High spatial precision; suitable for device-level post-processing; allows selective bubble removal in designated areas | Low efficiency; may introduce strain or mechanical damage | [22,103,112,113] |
| Electric field-driven | Applied voltage induces bubble motion or reduces interfacial adhesion, enabling bubble removal | No need for high temperature or solvents; can be controlled in situ | Relies on interfacial water or ions; potential electrochemical side reactions; poor uniformity; still under early development | [114,115,116] |
| Clean Assembly | Suppresses bubble nucleation during assembly | Enables large-area clean interfaces; prevents bubble formation at the source | High process requirements; strong dependence on specialized equipment | [43,74,117,118,119] |
5.1. Thermal Annealing
5.2. Chemical-Assisted Method
5.3. AFM-Based Method
5.4. Electric Field-Driven Method
5.5. Clean Assembly Methods
5.6. AI-Assisted Methods
5.6.1. AI for Bubble Identification
5.6.2. AI-Assisted Optimization of Preparation

6. Challenges and Outlook
6.1. Challenges
6.2. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 677–722. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Guo, L.; Han, J.; Wang, J. Recent advances in enhancing the photodetector performance of 2D materials by combining them with organic thin films. J. Mater. Chem. C 2024, 12, 1233–1267. [Google Scholar] [CrossRef]
- Katiyar, A.K.; Hoang, A.T.; Xu, D.; Hong, J.; Kim, B.J.; Ji, S.; Ahn, J.-H. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem. Rev. 2023, 124, 318–419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Liu, X.; Yang, R.; Qiu, J.; Xu, J.; Lu, B.; Rosen, J.; Qin, L.; Jiang, J. MXene-Stabilized VS2 Nanostructures for High-Performance Aqueous Zinc Ion Storage. Adv. Sci. 2024, 11, 2401252. [Google Scholar] [CrossRef]
- Hassan, J.Z.; Raza, A.; Babar, Z.U.D.; Qumar, U.; Kaner, N.T.; Cassinese, A. 2D material-based sensing devices: An update. J. Mater. Chem. A 2023, 11, 6016–6063. [Google Scholar] [CrossRef]
- Ko, J.; Ock, C.; Gim, H.; Hong, K.; Lee, Y.; Kwon, K.C. Two-dimensional materials for artificial sensory devices: Advancing neuromorphic sensing technology. NPJ 2D Mater. Appl. 2025, 9, 35. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, D.; Pratap Azad, U.; Kumar Singh, A.; Kumar Singh, S.; Singh, S.; Pratap Singh, D. The Applications of 2D Materials for Electrochemical Biosensing, Drug Delivery, and Environmental Monitoring. Curr. Top. Med. Chem. 2023, 23, 1426–1447. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Klimenko, A.V. Prospects for the Use of Two-Dimensional Nanomaterials in Energy Technologies (Review). Therm. Eng. 2023, 70, 551–572. [Google Scholar] [CrossRef]
- Ran, J.; Liu, Y.F.; Feng, H.X.; Shi, H.X.; Ma, Q. A review on graphene-based electrode materials for supercapacitor. J. Ind. Eng. Chem. 2024, 137, 106–121. [Google Scholar] [CrossRef]
- Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A.K.; Grigorieva, I.V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016, 7, 12587. [Google Scholar] [CrossRef] [PubMed]
- Haigh, S.J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D.C.; Novoselov, K.S.; Ponomarenko, L.A.; Geim, A.K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, D.A.; Dai, Z.; Lu, N. 2D Material Bubbles: Fabrication, Characterization, and Applications. Trends Chem. 2021, 3, 204–217. [Google Scholar] [CrossRef]
- Boddison-Chouinard, J.; Scarfe, S.; Watanabe, K.; Taniguchi, T.; Luican-Mayer, A. Flattening van der Waals heterostructure interfaces by local thermal treatment. Appl. Phys. Lett. 2019, 115, 231603. [Google Scholar] [CrossRef]
- Ding, X.; Qiao, B.; Uzoma, P.C.; Anwar, M.A.; Chen, Y.; Zhang, L.; Xu, Y.; Hu, H. Nano-spherical tip-based smoothing with minimal damage for 2D van der Waals heterostructures. Nanoscale 2025, 17, 3095–3104. [Google Scholar] [CrossRef]
- Rosenberger, M.R.; Chuang, H.-J.; McCreary, K.M.; Hanbicki, A.T.; Sivaram, S.V.; Jonker, B.T. Nano-“Squeegee” for the Creation of Clean 2D Material Interfaces. ACS Appl. Mater. Interfaces 2018, 10, 10379–10387. [Google Scholar] [CrossRef]
- Purdie, D.G.; Pugno, N.M.; Taniguchi, T.; Watanabe, K.; Ferrari, A.C.; Lombardo, A. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 2018, 9, 5387. [Google Scholar] [CrossRef]
- Pálinkás, A.; Molnár, G.; Hwang, C.; Biró, L.P.; Osváth, Z. Determination of the STM tip-graphene repulsive forces by comparative STM and AFM measurements on suspended graphene. RSC Adv. 2016, 6, 86253–86258. [Google Scholar] [CrossRef]
- Hou, Y.; Dai, Z.; Zhang, S.; Feng, S.; Wang, G.; Liu, L.; Xu, Z.; Li, Q.; Zhang, Z. Elastocapillary cleaning of twisted bilayer graphene interfaces. Nat. Commun. 2021, 12, 5069. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Xia, Y.Z.; Ren, Y.Q.; Xie, M.M.; Zhou, L.G.; Vinai, G.; Morton, S.A.; Wee, A.T.S.; van der Wiel, W.G.; Zhang, W.; et al. When Machine Learning Meets 2D Materials: A Review. Adv. Sci. 2024, 11, 2305277. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Liu, J.; Sebek, M.; Li, Z.; Fu, W.; Wang, Z.; Wang, Z. AI-assisted wafer-scale exfoliation and transfer of 2D materials: Status, challenges and perspectives. AI Sci. 2025, 1, 013002. [Google Scholar] [CrossRef]
- Sabattini, L.; Coriolano, A.; Casert, C.; Forti, S.; Barnard, E.S.; Beltram, F.; Pontil, M.; Whitelam, S.; Coletti, C.; Rossi, A. Towards AI-driven autonomous growth of 2D materials based on a graphene case study. Commun. Phys. 2025, 8, 180. [Google Scholar] [CrossRef]
- Gao, Y.H.; Shi, W.; Wang, W.C.; Wang, Y.; Zhao, Y.P.; Lei, Z.H.; Miao, R.R. Ultrasonic-Assisted Production of Graphene with High Yield in Supercritical CO and Its High Electrical Conductivity Film. Ind. Eng. Chem. Res. 2014, 53, 2839–2845. [Google Scholar] [CrossRef]
- Lan, S.F.; Rodrigues, S.; Kang, L.; Cai, W.S. Visualizing Optical Phase Anisotropy in Black Phosphorus. ACS Photonics 2016, 3, 1176–1181. [Google Scholar] [CrossRef]
- Zhao, W.J.; Ribeiro, R.M.; Eda, G. Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Acc. Chem. Res. 2015, 48, 91–99. [Google Scholar] [CrossRef]
- Demirci, U.B.; Miele, P.; Yot, P.G. Boron-Based (Nano-) Materials: Fundamentals and Applications. Crystals 2016, 6, 118. [Google Scholar] [CrossRef]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.B.; Wang, C.L.; Zou, X.M.; Liao, L. Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Adv. Opt. Mater. 2019, 7, 1800441. [Google Scholar] [CrossRef]
- Cho, B.; Hahm, M.G.; Choi, M.; Yoon, J.; Kim, A.R.; Lee, Y.J.; Park, S.G.; Kwon, J.D.; Kim, C.S.; Song, M.; et al. Charge-transfer-based Gas Sensing Using Atomic-layer MoS. Sci. Rep. 2015, 5, 8052. [Google Scholar] [CrossRef]
- Quan, W.J.; Shi, J.; Luo, H.Y.; Fan, C.; Lv, W.; Chen, X.W.; Zeng, M.; Yang, J.H.; Hu, N.T.; Su, Y.J.; et al. Fully Flexible MXene-based Gas Sensor on Paper for Highly Sensitive Room-Temperature Nitrogen Dioxide Detection. ACS Sens. 2023, 8, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.P.; Lee, Y.G.; Usman, M.; Ghosh, R.; Lu, K.L.; Chen, Y.F. Dirac Point Modulated Self-Powered Ultrasensitive Photoresponse and Color-Tunable Electroluminescence from Flexible Graphene/Metal-Organic Frameworks/Graphene Vertical Phototransistor. ACS Appl. Electron. Mater. 2022, 4, 2337–2345. [Google Scholar] [CrossRef]
- Yang, X.Y.; Li, J.H.; Hou, C.Y.; Zhang, Q.H.; Li, Y.G.; Wang, H.Z. Skeleton-Structure WS@CNT Thin-Film Hybrid Electrodes for High-Performance Quasi-Solid-State Flexible Supercapacitors. Front. Chem. 2020, 8, 442. [Google Scholar] [CrossRef]
- Li, K.C.; Ji, Q.T.; Liang, H.W.; Hua, Z.X.; Hang, X.Y.; Zeng, L.H.; Han, H.J. Biomedical application of 2D nanomaterials in neuroscience. J. Nanobiotechnol. 2023, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.L.; Hua, Q.L.; Xi, J.G.; Shi, Y.H.; Huang, T.C.; Dai, X.H.; Niu, J.A.; Wang, B.J.; Wang, Z.L.; Hu, W.G. Ultrafast and Low-Power 2D Bi2O2Se Memristors for Neuromorphic Computing Applications. Nano Lett. 2023, 23, 3842–3850. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z.G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der Zant, H.S.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Yu, J.; Li, J.; Zhang, W.; Chang, H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 2015, 6, 6705–6716. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.W.; Chang, C.S.; Li, L.J. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef]
- Kim, K.K.; Hsu, A.; Jia, X.; Kim, S.M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J.F.; Dresselhaus, M.; Palacios, T. Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett. 2011, 12, 161–166. [Google Scholar] [CrossRef]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.Y.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Tang, B.; Lu, Y.; Zhu, C.; Lu, Q.; Zhu, C.; Zheng, L.; Zhang, J.; Han, N.; Fang, W.; et al. Machine Learning Driven Synthesis of Few-Layered WTe(2) with Geometrical Control. J. Am. Chem. Soc. 2021, 143, 18103–18113. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lee, J.; Yao, F.; Sun, H. Quantifying the CVD-grown two-dimensional materials via image clustering. Nanoscale 2021, 13, 15324–15333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, F.; Shenoy, V.B.; Tang, M.; Lou, J. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Mater. Today 2020, 40, 132–139. [Google Scholar] [CrossRef]
- Shin, Y.J.; Shin, W.; Taniguchi, T.; Watanabe, K.; Kim, P.; Bae, S.H. Fast and accurate robotic optical detection of exfoliated graphene and hexagonal boron nitride by deep neural networks. 2D Mater. 2021, 8, 035017. [Google Scholar] [CrossRef]
- Haraguchi, Y.; Igarashi, Y.; Imai, H.; Oaki, Y. Size-Distribution Control of Exfoliated Nanosheets Assisted by Machine Learning: Small-Data-Driven Materials Science Using Sparse Modeling. Adv. Theor. Simul. 2021, 4, 2100158. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Tan, S.J.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; et al. Chemical Vapor Deposition of Large-Size Monolayer MoSe(2) Crystals on Molten Glass. J. Am. Chem. Soc. 2017, 139, 1073–1076. [Google Scholar] [CrossRef]
- Lukianov, M.Y.; Rubekina, A.A.; Bondareva, J.V.; Sybachin, A.V.; Diudbin, G.D.; Maslakov, K.I.; Kvashnin, D.G.; Klimova-Korsmik, O.G.; Shirshin, E.A.; Evlashin, S.A. Photoluminescence of Two-Dimensional MoS Nanosheets Produced by Liquid Exfoliation. Nanomaterials 2023, 13, 1982. [Google Scholar] [CrossRef]
- Blundo, E.; Yildirim, T.; Pettinari, G.; Polimeni, A. Experimental Adhesion Energy in van der Waals Crystals and Heterostructures from Atomically Thin Bubbles. Phys. Rev. Lett. 2021, 127, 046101. [Google Scholar] [CrossRef]
- Rokni, H.; Lu, W. Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air. Nat. Commun. 2020, 11, 5607. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Goossens, A.M.; Calado, V.E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L.M.K. Mechanical cleaning of graphene. Appl. Phys. Lett. 2012, 100, 073110. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.F.; Ahmed, S.; An, J.H.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B. Electronic and optoelectronic applications of solution-processed two-dimensional materials. Sci. Technol. Adv. Mater. 2019, 20, 992–1009. [Google Scholar] [CrossRef]
- Gong, Y.J.; Lin, J.H.; Wang, X.L.; Shi, G.; Lei, S.D.; Lin, Z.; Zou, X.L.; Ye, G.L.; Vajtai, R.; Yakobson, B.I.; et al. Vertical and in-plane heterostructures from WS/MoS monolayers. Nat. Mater. 2014, 13, 1135–1142. [Google Scholar] [CrossRef]
- Kang, T.; Tang, T.W.; Pan, B.J.; Liu, H.W.; Zhang, K.N.; Luo, Z.T. Strategies for Controlled Growth of Transition Metal Dichalcogenides by Chemical Vapor Deposition for Integrated Electronics. ACS Mater. Au 2022, 2, 665–685. [Google Scholar] [CrossRef]
- Kim, J.M.; Cho, C.; Hsieh, E.Y.; Nam, S. Heterogeneous deformation of two-dimensional materials for emerging functionalities. J. Mater. Res. 2020, 35, 1369–1385. [Google Scholar] [CrossRef]
- Scott Bunch, J.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, T.; Britnell, L.; Blake, P.; Gorbachev, R.V.; Gholinia, A.; Geim, A.K.; Casiraghi, C.; Novoselov, K.S. Graphene bubbles with controllable curvature. Appl. Phys. Lett. 2011, 99, 093103. [Google Scholar] [CrossRef]
- Kretinin, A.V.; Cao, Y.; Tu, J.S.; Yu, G.L.; Jalil, R.; Novoselov, K.S.; Haigh, S.J.; Gholinia, A.; Mishchenko, A.; Lozada, M. Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. Nano Lett. 2014, 14, 3270–3276. [Google Scholar] [CrossRef] [PubMed]
- Guinea, F.; Katsnelson, M.I.; Geim, A.K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2009, 6, 30–33. [Google Scholar] [CrossRef]
- Kwabena Bediako, D.; Rezaee, M.; Yoo, H.; Larson, D.T.; Frank Zhao, S.Y.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T.L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425–429. [Google Scholar] [CrossRef]
- Bignardi, L.; Lacovig, P.; Larciprete, R.; Alfè, D.; Lizzit, S.; Baraldi, A. Exploring 2D materials at surfaces through synchrotron-based core-level photoelectron spectroscopy. Surf. Sci. Rep. 2023, 78, 100586. [Google Scholar] [CrossRef]
- Jain, A.; Bharadwaj, P.; Heeg, S.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 2018, 29, 265203. [Google Scholar] [CrossRef] [PubMed]
- Pizzocchero, F.; Gammelgaard, L.; Jessen, B.S.; Caridad, J.M.; Wang, L.; Hone, J.; Bøggild, P.; Booth, T.J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 2016, 7, 11894. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Ding, X.; Qiao, B.; Oguzie, E.E.; Xu, Y.; Zheng, X.; Hu, H. AFM: An important enabling technology for 2D materials and devices. Nanotechnol. Rev. 2025, 14, 20250154. [Google Scholar] [CrossRef]
- Chen, S.; Son, J.; Huang, S.; Watanabe, K.; Taniguchi, T.; Bashir, R.; van der Zande, A.M.; King, W.P. Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS2 Devices. ACS Omega 2021, 6, 4013–4021. [Google Scholar] [CrossRef]
- Wang, W.; Clark, N.; Hamer, M.; Carl, A.; Tovari, E.; Sullivan-Allsop, S.; Tillotson, E.; Gao, Y.; Latour, H.d.; Selles, F. Clean assembly of van der Waals heterostructures using silicon nitride membranes. Nat. Electron. 2023, 6, 981–990. [Google Scholar] [CrossRef]
- Banszerus, L.; Möller, S.; Icking, E.; Watanabe, K.; Taniguchi, T.; Volk, C.; Stampfer, C. Single-Electron Double Quantum Dots in Bilayer Graphene. Nano Lett. 2020, 20, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Ma, X.J.; Dai, Z.H.; Zhang, S.; Hou, Y.; Wang, G.R.; Li, Q.Y.; Zhang, Z.; Wei, Y.G.; Liu, L.Q. Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials. Adv. Mater. Interfaces 2022, 9, 2101939. [Google Scholar] [CrossRef]
- Wu, M.; Ding, X.; An, M.; Liu, L.; Zheng, X.; Hu, H. Effective Interfacial Bubble Elimination in 2D Heterostructures via Atomic Force Microscope. ACS Appl. Nano Mater. 2025, 8, 12653–12660. [Google Scholar] [CrossRef]
- Gasparutti, I.; Song, S.H.; Neumann, M.; Wei, X.; Watanabe, K.; Taniguchi, T.; Lee, Y.H. How Clean Is Clean? Recipes for van der Waals Heterostructure Cleanliness Assessment. ACS Appl. Mater. Interfaces 2020, 12, 7701–7709. [Google Scholar] [CrossRef]
- Chiu, M.H.; Li, M.Y.; Zhang, W.J.; Hsu, W.T.; Chang, W.H.; Terrones, M.; Terrones, H.; Li, L.J. Spectroscopic Signatures for Interlayer Coupling in MoS-WSe van der Waals Stacking. ACS Nano 2014, 8, 9649–9656. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Liu, S.; Gao, S.; Huang, C.; Yu, X.; Xu, X.; Ke, H.; Xue, D.; Yu, G.; et al. Deep-Learning-Enabled Fast Raman Identification of the Twist Angle of Bi-Layer Graphene. Small 2025, 21, e2411833. [Google Scholar] [CrossRef]
- Wu, S.; Chen, G.; Shen, S.; Yan, J. Point Defect Detection and Classification in MoS(2) Scanning Tunneling Microscopy Images: A Deep Learning Approach. Molecules 2025, 30, 2644. [Google Scholar] [CrossRef]
- Gastaldo, M.; Varillas, J.; Rodríguez, Á.; Velický, M.; Frank, O.; Kalbáč, M. Tunable strain and bandgap in subcritical-sized MoS2 nanobubbles. NPJ 2D Mater. Appl. 2023, 7, 71. [Google Scholar] [CrossRef]
- Giorgio, C.D.; Blundo, E.; Pettinari, G.; Felici, M.; Bobba, F.; Polimeni, A. Mechanical, Elastic, and Adhesive Properties of Two-Dimensional Materials: From Straining Techniques to State-of-the-Art Local Probe Measurements. Adv. Mater. Interfaces 2022, 9, 2102220. [Google Scholar] [CrossRef]
- Varma Sangani, L.D.; Mandal, S.; Ghosh, S.; Watanabe, K.; Taniguchi, T.; Deshmukh, M.M. Dynamics of Interfacial Bubble Controls Adhesion Mechanics in Van der Waals Heterostructure. Nano Lett. 2022, 22, 3612–3619. [Google Scholar] [CrossRef] [PubMed]
- Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano 2011, 5, 9703–9709. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Park, J.; Kim, T.; Lee, J.; Kim, T. Charge Trap Dynamics in Nanobubbles on MoS Nanosheets: Implications for Reliability in 2D Electronic Devices. ACS Appl. Nano Mater. 2025, 8, 11185–11191. [Google Scholar] [CrossRef]
- Tyagi, A.; Mišeikis, V.; Martini, L.; Forti, S.; Mishra, N.; Gebeyehu, Z.M.; Giambra, M.A.; Zribi, J.; Frégnaux, M.; Aureau, D. Ultra-clean high-mobility graphene on technologically relevant substrates. Nanoscale 2022, 14, 2167–2176. [Google Scholar] [CrossRef]
- Jang, D.J.; Haidari, M.M.; Kim, J.H.; Ko, J.-Y.; Yi, Y.; Choi, J.S. A Modified Wet Transfer Method for Eliminating Interfacial Impurities in Graphene. Nanomaterials 2023, 13, 1494. [Google Scholar] [CrossRef]
- Bacsa, W.; Topin, F.; Miscevic, M.; Hill, J.M.; Huang, Y.; Ruoff, R.S. Probing elastic properties of graphene and heat conduction in graphene bubbles above 1000 °C. Phys. Rev. B 2023, 107, 195433. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Zhang, X.; Chen, X.; Li, B.; Wang, B.; Huang, M.; Zhu, C.; Zhang, X.; Bacsa, W.S. Raman Spectral Band Oscillations in Large Graphene Bubbles. Phys. Rev. Lett. 2018, 120, 186104. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jeong, T.Y.; Ahn, S.; Jung, S.; Cho, Y.H.; Yee, K.J. Effective Photoluminescence Imaging of Bubbles in hBN-Encapsulated WSe Monolayer. Nanomaterials 2020, 10, 350. [Google Scholar] [CrossRef]
- Luo, H.L.; Li, X.Y.; Zhao, Y.C.; Yang, R.; Bao, L.H.; Hao, Y.F.; Gao, Y.N.; Shi, N.N.; Guo, Y.; Liu, G.D.; et al. Simultaneous generation of direct- and indirect-gap photoluminescence in multilayer MoS bubbles. Phys. Rev. Mater. 2020, 4, 074006. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Shen, W.; Wu, M.; Li, B.; Zhang, Q.; Liu, S.; Hu, C.; Yang, S.; Gao, Y.; et al. Strain and Interference Synergistically Modulated Optical and Electrical Properties in ReS/Graphene Heterojunction Bubbles. ACS Nano 2022, 16, 16271–16280. [Google Scholar] [CrossRef]
- Ai, R.Q.; Cui, X.M.; Li, Y.; Zhuo, X.L. Local Strain Engineering of Two-Dimensional Transition Metal Dichalcogenides Towards Quantum Emitters. Nano-Micro Lett. 2025, 17, 104. [Google Scholar] [CrossRef]
- Yu, C.L.; Cao, J.C.; Zhu, S.Z.; Dai, Z.H. Preparation and Modeling of Graphene Bubbles to Obtain Strain-Induced Pseudomagnetic Fields. Materials 2024, 17, 2889. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wang, Q.; Wu, X.; Song, T.; Song, Q.; Wang, J. Thermal annealing effect on the electrical quality of graphene/hexagonal boron nitride heterostructure devices. Nanotechnology 2020, 31, 355001. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Jin, C.; Suenaga, K.; Chiu, P.-W. Graphene Annealing: How Clean Can It Be? Nano Lett. 2011, 12, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y. Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices. Nano Lett. 2011, 11, 767–771. [Google Scholar] [CrossRef]
- Zomer, P.J.; Guimarães, M.H.D.; Brant, J.C.; Tombros, N.; van Wees, B.J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 2014, 105, 013101. [Google Scholar] [CrossRef]
- Dong, W.; Dai, Z.; Liu, L.; Zhang, Z. Toward Clean 2D Materials and Devices: Recent Progress in Transfer and Cleaning Methods. Adv. Mater. 2023, 36, 2303014. [Google Scholar] [CrossRef]
- Marinov, D.; Marneffe, J.-F.d.; Smets, Q.; Arutchelvan, G.; Bal, K.M.; Voronina, E.; Rakhimova, T.; Mankelevich, Y.; Kazzi, S.E.; Mehta, A.N. Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers. NPJ 2D Mater. Appl. 2021, 5, 17. [Google Scholar] [CrossRef]
- Schwartz, J.J.; Chuang, H.-J.; Rosenberger, M.R.; Sivaram, S.V.; McCreary, K.M.; Jonker, B.T.; Centrone, A. Chemical Identification of Interlayer Contaminants within van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2019, 11, 25578–25585. [Google Scholar] [CrossRef] [PubMed]
- Fazio, D.D.; Purdie, D.G.; Ott, A.K.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F.H.L. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. ACS Nano 2019, 13, 8926–8935. [Google Scholar] [CrossRef]
- Vasu, K.S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R.J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S.J. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 2016, 7, 12168. [Google Scholar] [CrossRef]
- Tripathi, M.; Mittelberger, A.; Mustonen, K.; Mangler, C.; Kotakoski, J.; Meyer, J.C.; Susi, T. Cleaning graphene: Comparing heat treatments in air and in vacuum. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2017, 11, 1700124. [Google Scholar] [CrossRef]
- Choi, W.; Seo, Y.-S.; Park, J.-Y.; Kim, K.B.; Jung, J.; Lee, N.; Seo, Y.; Hong, S. Effect of Annealing in Ar/H2 Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate). IEEE Trans. Nanotechnol. 2015, 14, 70–74. [Google Scholar] [CrossRef]
- Camilli, L.; Galbiati, M.; Di Gaspare, L.; De Seta, M.; Pis, I.; Bondino, F.; Caporale, A.; Veigang-Radulescu, V.P.; Babenko, V.; Hofmann, S.; et al. Tracking interfacial changes of graphene/Ge(110) during in-vacuum annealing. Appl. Surf. Sci. 2022, 602, 154291. [Google Scholar] [CrossRef]
- Wood, J.D.; Doidge, G.P.; Carrion, E.A.; Koepke, J.C.; Kaitz, J.A.; Datye, I.; Behnam, A.; Hewaparakrama, J.; Aruin, B.; Chen, Y. Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology 2015, 26, 055302. [Google Scholar] [CrossRef]
- Ding, X.; Qiao, B.; Chen, H.; Uzoma, P.C.; Xu, Y.; Hu, H. Damage-Free Cleaning of 2D van der Waals Heterostructures with Nano-Spherical AFM Probes. In Proceedings of the 2023 IEEE 23rd International Conference on Nanotechnology (NANO), Jeju City, Republic of Korea, 2–5 July 2023; pp. 899–903. [Google Scholar] [CrossRef]
- Hu, H.; Shi, B.; Breslin, C.M.; Gignac, L.; Peng, Y.T. A Sub-Micron Spherical Atomic Force Microscopic Tip for Surface Measurements. Langmuir 2020, 36, 7861–7867. [Google Scholar] [CrossRef] [PubMed]
- Dollekamp, E.; Bampoulis, P.; Poelsema, B.; Zandvliet, H.J.W.; Kooij, E.S. Electrochemically Induced Nanobubbles between Graphene and Mica. Langmuir 2016, 32, 6582–6590. [Google Scholar] [CrossRef]
- Macha, M.; Thakur, M.; Radenovic, A.; Marion, S. Stress induced delamination of suspended MoS(2) in aqueous environments. Phys. Chem. Chem. Phys. 2022, 24, 19948–19955. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Necas, D.; Zajícková, L. Evidence of flexoelectricity in graphene nanobubbles created by tip induced electric field. Carbon 2021, 179, 677–682. [Google Scholar] [CrossRef]
- Wang, W. Polymer-free assembly of ultraclean van der Waals heterostructures. Nat. Rev. Phys. 2022, 4, 504. [Google Scholar] [CrossRef]
- Martanov, S.G.; Zhurbina, N.K.; Pugachev, M.V.; Duleba, A.I.; Akmaev, M.A.; Belykh, V.V.; Kuntsevich, A.Y. Making van der Waals Heterostructures Assembly Accessible to Everyone. Nanomaterials 2020, 10, 2305. [Google Scholar] [CrossRef]
- McKenzie, J.; Sharma, N.; Liu, X. Fabrication of pristine 2D heterostructures for scanning probe microscopy. APL Mater. 2024, 12, 070602. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jin, C.; Lee, J.C.; Jen, S.F.; Suenaga, K.; Chiu, P.W. Clean transfer of graphene for isolation and suspension. ACS Nano 2011, 5, 2362–2368. [Google Scholar] [CrossRef]
- Ni, Z.H.; Wang, H.M.; Luo, Z.Q.; Wang, Y.Y.; Yu, T.; Wu, Y.H.; Shen, Z.X. The effect of vacuum annealing on graphene. J. Raman Spectrosc. 2010, 41, 479–483. [Google Scholar] [CrossRef]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, H.Y.; Lotya, M.; Coleman, J.N.; Kim, G.T.; Duesberg, G.S. Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation. Adv. Mater. 2011, 23, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
- Tilmann, R.; Bartlam, C.; Hartwig, O.; Tywoniuk, B.; Dominik, N.; Cullen, C.P.; Peters, L.; Stimpel-Lindner, T.; McEvoy, N.; Duesberg, G.S. Identification of Ubiquitously Present Polymeric Adlayers on 2D Transition Metal Dichalcogenides. ACS Nano 2023, 17, 10617–10627. [Google Scholar] [CrossRef] [PubMed]
- Mitterreiter, E.; Schuler, B.; Micevic, A.; Hernangómez-Pérez, D.; Barthelmi, K.; Cochrane, K.A.; Kiemle, J.; Sigger, F.; Klein, J.; Wong, E. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 2021, 12, 3822. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Ma, Z.; Zheng, G.; Ma, Y.; Sheng, Z. Annealing effect on photoluminescence of two dimensional WSe2/BN heterostructure. Appl. Phys. Lett. 2020, 117, 233103. [Google Scholar] [CrossRef]
- Kollipara, P.S.; Li, J.; Zheng, Y. Optical Patterning of Two-Dimensional Materials. Research 2020, 2020, 6581250. [Google Scholar] [CrossRef]
- Lipovka, A.; Garcia, A.; Abyzova, E.; Fatkullin, M.; Song, Z.; Li, Y.; Wang, R.; Rodriguez, R.D.; Sheremet, E. Laser Processing of Emerging Nanomaterials for Optoelectronics and Photocatalysis. Adv. Opt. Mater. 2024, 12, 2303194. [Google Scholar] [CrossRef]
- Pham, P.V. Cleaning of graphene surfaces by low-pressure air plasma. R. Soc. Open Sci. 2018, 5, 172395. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, X.; Hu, Y.; Qiu, S.; Gu, L.; Wang, C.; Zuo, P. Stable anchoring and uniform distribution of SiO2 nanotubes on reduced graphene oxide through electrostatic self-assembly for ultra-high lithium storage performance. Carbon 2020, 167, 835–842. [Google Scholar] [CrossRef]
- Kim, Y.; Herlinger, P.; Taniguchi, T.; Watanabe, K.; Smet, J.H. Reliable Postprocessing Improvement of van der Waals Heterostructures. ACS Nano 2019, 13, 14182–14190. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, J.; Ly, T.H. Clean Transfer of Two-Dimensional Materials: A Comprehensive Review. ACS Nano 2024, 18, 11573–11597. [Google Scholar] [CrossRef]
- Salaita, K.; Wang, Y.; Fragala, J.; Vega, R.A.; Liu, C.; Mirkin, C.A. Massively parallel dip-pen nanolithography with 55,000-pen two-dimensional arrays. Angew. Chem. Int. Ed. Engl. 2006, 45, 7220–7223. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Alsharif, N.; Huang, Z.; White, A.E.; Wang, Y.; Brown, K.A. Massively parallel cantilever-free atomic force microscopy. Nat. Commun. 2021, 12, 393. [Google Scholar] [CrossRef]
- Holz, M.; Reuter, C.; Ahmad, A.; Reum, A.; Ivanov, T.; Guliyev, E.; Rangelow, I.W.; Lee, H.S. Parallel active cantilever AFM tool for high-throughput inspection and metrology. Proc. SPIE 2019, 10959, 444–449. [Google Scholar] [CrossRef]
- Iwasaki, T.; Endo, K.; Watanabe, E.; Tsuya, D.; Morita, Y.; Nakaharai, S.; Noguchi, Y.; Wakayama, Y.; Watanabe, K.; Taniguchi, T. Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 8533–8538. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Kim, M.; Nguyen, C.T.; Suleman, M.; Nguyen, D.C.; Nasir, N.; Rehman, M.A.; Park, H.M.; Lee, S.; Kim, S.Y. Fast fabrication technique for high-quality van der Waals heterostructures using inert shielding gas environment. Appl. Surf. Sci. 2023, 639, 158186. [Google Scholar] [CrossRef]
- Uslu, J.L.; Nekrasov, A.; Hermans, A.; Beschoten, B.; Leibe, B.; Waldecker, L.; Stampfer, C. MaskTerial: A foundation model for automated 2D material flake detection. Digit. Discov. 2025, 4, 3744–3752. [Google Scholar] [CrossRef]
- Saito, Y.; Shin, K.; Terayama, K.; Desai, S.; Onga, M.; Nakagawa, Y.; Itahashi, Y.M.; Iwasa, Y.; Yamada, M.; Tsuda, K. Deep-learning-based quality filtering of mechanically exfoliated 2D crystals. NPJ Comput. Mater. 2019, 5, 124. [Google Scholar] [CrossRef]
- Mao, Y.; Dong, N.N.; Wang, L.; Chen, X.; Wang, H.Q.; Wang, Z.X.; Kislyakov, I.M.; Wang, J. Machine Learning Analysis of Raman Spectra of MoS. Nanomaterials 2020, 10, 2223. [Google Scholar] [CrossRef]
- Song, T.; Myoung, N.; Lee, H.; Park, H.C. Machine learning approach to the recognition of nanobubbles in graphene. Appl. Phys. Lett. 2021, 119, 193103. [Google Scholar] [CrossRef]
- Kim, S.; Myoung, N.; Jun, S.; Go, A. Neural network-based recognition of multiple nanobubbles in graphene. Curr. Appl. Phys. 2024, 68, 44–50. [Google Scholar] [CrossRef]
- Masubuchi, S.; Morimoto, M.; Morikawa, S.; Onodera, M.; Asakawa, Y.; Watanabe, K.; Taniguchi, T.; Machida, T. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 2018, 9, 1413. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Liao, J.H.; Bu, S.Y.; Hu, Z.N.; Hu, J.Y.; Lu, Q.; Shang, M.P.; Guo, B.B.; Chen, G.; Zhao, Q.; et al. Automated processing and transfer of two-dimensional materials with robotics. Nat. Chem. Eng. 2025, 2, 296–308. [Google Scholar] [CrossRef]
- Xiao, Z.C.; Wan, Q.F.; Durkan, C. Cleaning Transferred Graphene for Optimization of Device Performance. Adv. Mater. Interfaces 2019, 6, 1801794. [Google Scholar] [CrossRef]
- He, L.; Wang, H.; Chen, L.; Wang, X.; Xie, H.; Jiang, C.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K.; et al. Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment. Nat. Commun. 2019, 10, 2815. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, D.; Blundo, E.; Felici, M.; Pettinari, G.; Liu, B.; Yildrim, T.; Petroni, E.; Zhang, C.; Zhu, Y.; Sennato, S.; et al. Controlled Micro/Nanodome Formation in Proton-Irradiated Bulk Transition-Metal Dichalcogenides. Adv. Mater. 2019, 31, e1903795. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.W.; Liu, L.Q.; Dong, W.L.; Zhou, Y.K.; Zhang, Z. Mechanics of 2D material bubbles. Nano Res. 2023, 16, 13434–13449. [Google Scholar] [CrossRef]
- Zhou, J.; Thomas, J.C.; Darlington, T.P.; Barnard, E.S.; Taguchi, A.; Schwartzberg, A.; Weber-Bargioni, A. Probing and Tuning Strain-Localized Exciton Emission in 2D Material Bubbles at Room Temperature. Adv. Mater. 2025, e03134. [Google Scholar] [CrossRef]
- Levy, N.; Burke, S.A.; Meaker, K.L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Castro Neto, A.H.; Crommie, M.F. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544–547. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, K.; Qiao, B.; Ding, X.; Huang, C.; Hu, H. Bubbles in 2D Materials: Formation Mechanisms, Impacts, and Removal Strategies for Next-Generation Electronic Devices. Nanomaterials 2025, 15, 1888. https://doi.org/10.3390/nano15241888
Du K, Qiao B, Ding X, Huang C, Hu H. Bubbles in 2D Materials: Formation Mechanisms, Impacts, and Removal Strategies for Next-Generation Electronic Devices. Nanomaterials. 2025; 15(24):1888. https://doi.org/10.3390/nano15241888
Chicago/Turabian StyleDu, Kaitai, Baoshi Qiao, Xiaolei Ding, Changjin Huang, and Huan Hu. 2025. "Bubbles in 2D Materials: Formation Mechanisms, Impacts, and Removal Strategies for Next-Generation Electronic Devices" Nanomaterials 15, no. 24: 1888. https://doi.org/10.3390/nano15241888
APA StyleDu, K., Qiao, B., Ding, X., Huang, C., & Hu, H. (2025). Bubbles in 2D Materials: Formation Mechanisms, Impacts, and Removal Strategies for Next-Generation Electronic Devices. Nanomaterials, 15(24), 1888. https://doi.org/10.3390/nano15241888

