Defect Physics and Nanoscale Passivation Strategies in BaSi2 Thin-Film Photovoltaics
Abstract
1. Introduction
2. Defect Physics in BaSi2 Thin Films
2.1. Formation and Classification of Defects

2.2. Electronic Structure Modulation and Carrier Dynamics
2.3. Defect–Optoelectronic Coupling
3. Passivation and Defect Control Strategies
3.1. Chemical and Structural Passivation Mechanisms
3.2. Doping, Interface, and Epitaxial Regulation
3.3. Evaluation of Passivation Effectiveness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hara, K.O.; Nakanishi, T.; Ueda, R.; Yamanaka, J.; Arimoto, K. Inert interlayers and evaporation techniques for high-quality BaSi2 heterostructures. Jpn. J. Appl. Phys. 2025, 64, 02SP31. [Google Scholar] [CrossRef]
- Yadav, T.; Yadav, S.; Sahu, A. Comparative performance analysis of perovskite/CIGS-based double absorber layer solar cell with BaSi2 as a BSF layer. J. Opt. 2024, 53, 2922–2929. [Google Scholar] [CrossRef]
- Benincasa, L.; Hoshida, H.; Deng, T.; Sato, T.; Xu, Z.; Toko, K.; Terai, Y.; Suemasu, T. Investigation of defect levels in BaSi2 epitaxial films by photoluminescence and the effect of atomic hydrogen passivation. J. Phys. Commun. 2019, 3, 075005. [Google Scholar] [CrossRef]
- Cretì, A.; Prete, P.; Lovergine, N.; Lomascolo, M. Enhanced Optical Absorption of GaAs Near-Band-Edge Transitions in GaAs/AlGaAs Core–Shell Nanowires: Implications for Nanowire Solar Cells. ACS Appl. Nano Mater. 2022, 5, 18149–18158. [Google Scholar] [CrossRef]
- Cingolani, R.; Lomascolo, M.; Lovergine, N.; Dabbicco, M.; Ferrara, M.; Suemune, I. Excitonic properties of ZnSe/ZnSeS superlattices. Appl. Phys. Lett. 1994, 64, 2439–2441. [Google Scholar] [CrossRef]
- Koitabashi, R.; Kido, K.; Hasebe, H.; Yamashita, Y.; Toko, K.; Mesuda, M.; Suemasu, T. Growth conditions for high-photoresponsivity randomly oriented polycrystalline BaSi2 films by radio-frequency sputtering: Comparison with BaSi2 epitaxial films. Appl. Phys. Express 2022, 15, 025502. [Google Scholar] [CrossRef]
- Kumar, M.; Umezawa, N.; Imai, M. Recent advances in computational studies of thin-film solar cell material BaSi2. Jpn. J. Appl. Phys. 2020, 59, SF0803. [Google Scholar] [CrossRef]
- Kumar, M.; Umezawa, N.; Zhou, W.; Imai, M. Barium disilicide as a promising thin-film photovoltaic absorber: Structural, electronic, and defect properties. J. Mater. Chem. A 2017, 5, 25293–25302. [Google Scholar] [CrossRef]
- Zhao, F.; Xie, Q.; Chen, Q.; Yang, C. First-principles calculations on the electronic structure and optical properties of BaSi2. Sci. China Phys. Mech. Astron. 2009, 52, 580–586. [Google Scholar] [CrossRef]
- Yamashita, Y.; Takayanagi, K.; Gotoh, K.; Toko, K.; Usami, N.; Suemasu, T. Zn1–xGexOy Passivating Interlayers for BaSi2 Thin-Film Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 13828–13835. [Google Scholar] [CrossRef]
- Migas, D.B.; Bogorodz, V.O.; Krivosheeva, A.V.; Shaposhnikov, V.L.; Filonov, A.B.; Borisenko, V.E. Electronic properties of thin BaSi2 films with different orientations. Jpn. J. Appl. Phys. 2017, 56, 05DA03. [Google Scholar] [CrossRef]
- Kido, K.; Koitabashi, R.; Ishiyama, T.; Hasebe, H.; Mesuda, M.; Toko, K.; Suemasu, T. Co-sputtering deposition of high-photoresponsivity and high-mobility polycrystalline BaSi2 films on Si substrates. Thin Solid Films 2022, 758, 139426. [Google Scholar] [CrossRef]
- Mohmad, A.R.; Xu, Z.; Yamashita, Y.; Suemasu, T. Assessing defect-assisted emissions in indirect bandgap BaSi2 by photoluminescence. J. Lumin. 2022, 252, 119312. [Google Scholar] [CrossRef]
- Sato, T.; Lombard, C.; Yamashita, Y.; Xu, Z.; Benincasa, L.; Toko, K.; Gambarelli, S.; Suemasu, T. Investigation of native defects in BaSi2 epitaxial films by electron paramagnetic resonance. Appl. Phys. Express 2019, 12, 061005. [Google Scholar] [CrossRef]
- Fukaya, Y.; Aonuki, S.; Kajihara, K.; Toko, K.; Suemasu, T. Suppression of oxygen diffusion from MoOx to BaSi2 by hydrogenated amorphous Si layers. Mater. Sci. Semicond. Process. 2025, 197, 109732. [Google Scholar] [CrossRef]
- Abdillah, N.; Aonuki, S.; Fukaya, Y.; Toko, K.; Suemasu, T. First-principles insights into the incorporation of arsenic in BaSi2 thin films grown by molecular beam epitaxy. Appl. Surf. Sci. 2025, 711, 164119. [Google Scholar] [CrossRef]
- Imai, M.; Matsushita, Y. Effect of Ca substitution on crystal structure and band gap of solar cell material BaSi2. J. Solid State Chem. 2024, 331, 124549. [Google Scholar] [CrossRef]
- Chai, J.-S.; Zhu, X.-X.; Wang, J.-T. Structural and electronic properties of BaSi2(100) thin film on Si(111) substrate. J. Mater. Sci. 2020, 55, 9483–9492. [Google Scholar] [CrossRef]
- Evers, J. Transformation of three-connected silicon in BaSi2. J. Solid State Chem. 1980, 32, 77–86. [Google Scholar] [CrossRef]
- Kang, S.C.; Kim, S.Y.; Lee, S.K.; Kim, K.; Allouche, B.; Hwang, H.J.; Lee, B.H. Channel Defect Profiling and Passivation for ZnO Thin-Film Transistors. Nanomaterials 2020, 10, 1186. [Google Scholar] [CrossRef] [PubMed]
- Rehan, M.; Cho, A.; Amare, A.M.; Kim, K.; Yun, J.H.; Cho, J.-S.; Park, J.H.; Gwak, J.; Shin, D. Defect passivation in Cu2ZnSnSe4 thin-film solar cells by novel sodium doping. Sol. Energy Mater. Sol. Cells 2021, 228, 111138. [Google Scholar] [CrossRef]
- Hara, K.O.; Usami, N.; Hoshi, Y.; Shiraki, Y.; Suzuno, M.; Toko, K.; Suemasu, T. Structural Study of BF2 Ion Implantation and Post Annealing of BaSi2 Epitaxial Films. Jpn. J. Appl. Phys. 2011, 50, 121202. [Google Scholar] [CrossRef]
- Lin, S.-S.; Liao, C.-N. Effect of ball milling and post treatment on crystal defects and transport properties of Bi2(Se,Te)3 compounds. J. Appl. Phys. 2011, 110, 093707. [Google Scholar] [CrossRef]
- Meng, R.; Houssa, M. Ferromagnetism in two-dimensional metal dibromides induced by hole-doping. Sci. Rep. 2023, 13, 11521. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.O.; Takizawa, S.; Yamanaka, J.; Usami, N.; Arimoto, K. Reactive deposition growth of highly (001)-oriented BaSi2 films by close-spaced evaporation. Mater. Sci. Semicond. Process. 2020, 113, 105044. [Google Scholar] [CrossRef]
- Morales, L.F. Interphase misorientation as a tool to study metamorphic reactions and crystallization in geological materials. Am. Miner. 2021, 107, 1501–1518. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, D. Tailoring band alignment of Cu2ZnSn(S,Se)4/CdS interface by Al2O3 drives solar cell efficiency. J. Alloys Compd. 2024, 970, 172651. [Google Scholar] [CrossRef]
- Du, W.; Baba, M.; Toko, K.; Hara, K.O.; Watanabe, K.; Sekiguchi, T.; Usami, N.; Suemasu, T. Analysis of the electrical properties of Cr/n-BaSi2 Schottky junction and n-BaSi2/p-Si heterojunction diodes for solar cell applications. J. Appl. Phys. 2014, 115, 223701. [Google Scholar] [CrossRef]
- Sato, T.; Mouesca, J.-M.; Barra, A.-L.; Gourier, D.; Imai, M.; Suemasu, T.; Gambarelli, S. Point defects in BaSi2 identified and analyzed by electron paramagnetic resonance, photoluminescence and density functional theory. Acta Mater. 2024, 278, 120230. [Google Scholar] [CrossRef]
- Xu, Z.; Shohonov, D.A.; Filonov, A.B.; Gotoh, K.; Deng, T.; Honda, S.; Toko, K.; Usami, N.; Migas, D.B.; Borisenko, V.E.; et al. Marked enhancement of the photoresponsivity and minority-carrier lifetime of BaSi2 passivated with atomic hydrogen. Phys. Rev. Mater. 2019, 3, 065403. [Google Scholar] [CrossRef]
- Hara, K.O.; Yamamoto, C.; Yamanaka, J.; Arimoto, K.; Nakagawa, K.; Usami, N. BaSi2 formation mechanism in thermally evaporated films and its application to reducing oxygen impurity concentration. Jpn. J. Appl. Phys. 2018, 57, 04FS01. [Google Scholar] [CrossRef]
- Khan, M.A.; Hara, K.O.; Nakamura, K.; Du, W.; Baba, M.; Toh, K.; Suzuno, M.; Toko, K.; Usami, N.; Suemasu, T. Molecular beam epitaxy of boron doped p-type BaSi2 epitaxial films on Si(111) substrates for thin-film solar cells. J. Cryst. Growth 2013, 378, 201–204. [Google Scholar] [CrossRef]
- Hara, K.O.; Arimoto, K.; Yamanaka, J.; Nakagawa, K. Fabrication of SnS/BaSi2 heterojunction by thermal evaporation for solar cell applications. Jpn. J. Appl. Phys. 2019, 58, SBBF01. [Google Scholar] [CrossRef]
- Hara, K.O.; Usami, N.; Toh, K.; Baba, M.; Toko, K.; Suemasu, T. Investigation of the recombination mechanism of excess carriers in undoped BaSi2 films on silicon. J. Appl. Phys. 2012, 112, 083108. [Google Scholar] [CrossRef]
- Yu, X.; Sugeta, M.; Yamagami, Y.; Fujita, M.; Nagatsuma, T. Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications. Appl. Phys. Express 2019, 12, 012005. [Google Scholar] [CrossRef]
- Morita, K.; Inomata, Y.; Suemasu, T. Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy. Thin Solid Films 2006, 508, 363–366. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kurosaki, K.; Imamura, Y.; Muta, H.; Yamanaka, S. Thermoelectric properties of BaSi2, SrSi2, and LaSi. J. Appl. Phys. 2007, 102, 063703. [Google Scholar] [CrossRef]
- Nakamura, T.; Suemasu, T.; Takakura, K.-I.; Hasegawa, F.; Wakahara, A.; Imai, M. Investigation of the energy band structure of orthorhombic BaSi2 by optical and electrical measurements and theoretical calculations. Appl. Phys. Lett. 2002, 81, 1032–1034. [Google Scholar] [CrossRef]
- Tsukahara, D.; Baba, M.; Watanabe, K.; Kimura, T.; Hara, K.O.; Du, W.; Usami, N.; Toko, K.; Sekiguchi, T.; Suemasu, T. Cross-sectional potential profile across a BaSi2 pn junction by Kelvin probe force microscopy. Jpn. J. Appl. Phys. 2015, 54, 030306. [Google Scholar] [CrossRef]
- Alam Moon, M.; Ali, H.; Rahman, F.; Kuddus, A.; Hossain, J.; Ismail, A.B.M. Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Phys. Scr. 2019, 95, 035506. [Google Scholar] [CrossRef]
- McKee, R.A.; Walker, F.J.; Conner, J.R.; Raj, R. BaSi2 and thin film alkaline earth silicides on silicon. Appl. Phys. Lett. 1993, 63, 2818–2820. [Google Scholar] [CrossRef]
- Kumar, M.; Umezawa, N.; Imai, M. BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study. Appl. Phys. Express 2014, 7, 071203. [Google Scholar] [CrossRef]
- Yang, J.; Lee, D.; Huh, K.; Jung, S.; Lee, J.; Lee, H.; Baek, D.; Kim, B.; Kim, D.; Nam, J.; et al. Influence of surface properties on the performance of Cu(In,Ga)(Se,S)2 thin-film solar cells using Kelvin probe force microscopy. RSC Adv. 2015, 5, 40719–40725. [Google Scholar] [CrossRef]
- Du, R.; Li, F.; Yang, K.; Li, Q.; Du, W.; Zhang, Y.; Suemasu, T. Epitaxial growth of BaSi2 thin films by co-sputtering of Ba and Si for solar cell applications. Appl. Phys. Express 2021, 14, 065501. [Google Scholar] [CrossRef]
- Hersam, M.C. Defects at the Two-Dimensional Limit. J. Phys. Chem. Lett. 2016, 6, 2738–2739. [Google Scholar] [CrossRef]
- Plumley, J.A.; Dannenberg, J.J. A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error. J. Comput. Chem. 2011, 32, 1519–1527. [Google Scholar] [CrossRef]
- Imai, M.; Hirano, T.; Kikegawa, T.; Shimomura, O. In situ measurements of the orthorhombic-to-trigonal transition in BaSi2sunder high-pressure and high-temperature conditions. Phys. Rev. B 1997, 55, 132–135. [Google Scholar] [CrossRef]
- Takabe, R.; Takeuchi, H.; Du, W.; Ito, K.; Toko, K.; Ueda, S.; Kimura, A.; Suemasu, T. Evaluation of band offset at amorphous-Si/BaSi2 interfaces by hard x-ray photoelectron spectroscopy. J. Appl. Phys. 2016, 119, 165304. [Google Scholar] [CrossRef]
- Takabe, R.; Deng, T.; Kodama, K.; Yamashita, Y.; Sato, T.; Toko, K.; Suemasu, T. Impact of Ba to Si deposition rate ratios during molecular beam epitaxy on carrier concentration and spectral response of BaSi2 epitaxial films. J. Appl. Phys. 2018, 123, 045703. [Google Scholar] [CrossRef]
- Dasgupta, N.P.; Lee, H.-B.; Bent, S.F.; Weiss, P.S. Recent Advances in Atomic Layer Deposition. Chem. Mater. 2016, 28, 1943–1947. [Google Scholar] [CrossRef]
- Zheng-Ze, C.; Ze, C.; Bin, X. Electronic Structure and Optical Properties of Semiconducting Orthorhombic BaSi2. Chin. Phys. Lett. 2007, 24, 2646–2649. [Google Scholar] [CrossRef]
- Peng, H.; Wang, C.L.; Li, J.C.; Zhang, R.Z.; Wang, H.C.; Sun, Y.; Sheng, M. Electronic and Lattice Vibrational Properties of BaSi2 from Density Functional Theory Calculations. J. Electron. Mater. 2011, 40, 620–623. [Google Scholar] [CrossRef]
- Kobayashi, M.; Matsumoto, Y.; Ichikawa, Y.; Tsukada, D.; Suemasu, T. Control of Electron and Hole Concentrations in Semiconducting Silicide BaSi2 with Impurities Grown by Molecular Beam Epitaxy. Appl. Phys. Express 2008, 1, 051403. [Google Scholar] [CrossRef]
- Fricchione, G. Mind body medicine: A modern bio-psycho-social model forty-five years after Engel. BioPsychoSoc. Med. 2023, 17, 12. [Google Scholar] [CrossRef]
- Son, H.; Lim, H.; Moon, J.; Jun, D.; Ju, B.-K.; Kim, S. Investigating the reliability of electrically conductive adhesives for shingled photovoltaic Si modules. Sol. Energy Mater. Sol. Cells 2022, 236, 111403. [Google Scholar] [CrossRef]
- Fenning, D.P.; Schulz, P.; Stranks, S.D. Halide Perovskites—Optoelectronic and Structural Characterization Methods. Adv. Energy Mater. 2020, 10, 2001812. [Google Scholar] [CrossRef]
- Vos, M.F.J.; Chopra, S.N.; Verheijen, M.A.; Ekerdt, J.G.; Agarwal, S.; Kessels, W.M.M.; Mackus, A.J.M. Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching. Chem. Mater. 2019, 31, 3878–3882. [Google Scholar] [CrossRef]
- Migas, D.B.; Shaposhnikov, V.L.; Borisenko, V.E. Isostructural BaSi2, BaGe2 and SrGe2: Electronic and optical properties. Phys. Status Solidi 2010, 244, 2611–2618. [Google Scholar] [CrossRef]




| tBaSi:H | Type of Conductivity | Concentration (cm−3) | Mobility (cm2 V−1 s−1) |
|---|---|---|---|
| 1 min | p | 1.1 × 1017 | 25 |
| 15 min | p | 1.8 × 1017 | 97 |
| 30 min | n | 9 × 1015 | 1240 |
| Surface | Surface Energy (meV/Å2) | Hole Surface State (eV Above VBM) | Electron Surface State (eV Below CBM) |
|---|---|---|---|
| (001) | 40.0 | One deep | One deep |
| (010) | 29.0 | One shallow | One shallow |
| (100) | 29.3 | No | One shallow at 0.05 |
| (011) | 40.0 | One shallow | One shallow |
| (101) | 34.6 | Surface band at 0.43 | No |
| (110) | 40.1 | Two deep | One shallow |
| (111) | 28.8 | No | No |
| Method | Cost | Throughput | Process Compatibility/Challenges |
|---|---|---|---|
| ALD | High | Moderate | Excellent uniformity, precise thickness control, precursor cost and stress management required |
| Plasma/Ion-beam | Low | Low | Rapid treatment, may induce thin-film damage, limited wafer-scale reproducibility |
| Molecular-layer/2D coverage | Moderate | Moderate | Enhances surface uniformity, requires precise integration with electrodes, moderate equipment cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tang, Y.; Xin, K.; Pan, L.; Lu, W. Defect Physics and Nanoscale Passivation Strategies in BaSi2 Thin-Film Photovoltaics. Nanomaterials 2025, 15, 1750. https://doi.org/10.3390/nano15231750
Wang X, Tang Y, Xin K, Pan L, Lu W. Defect Physics and Nanoscale Passivation Strategies in BaSi2 Thin-Film Photovoltaics. Nanomaterials. 2025; 15(23):1750. https://doi.org/10.3390/nano15231750
Chicago/Turabian StyleWang, Xiqiu, Yehua Tang, Kaitao Xin, Liping Pan, and Weiping Lu. 2025. "Defect Physics and Nanoscale Passivation Strategies in BaSi2 Thin-Film Photovoltaics" Nanomaterials 15, no. 23: 1750. https://doi.org/10.3390/nano15231750
APA StyleWang, X., Tang, Y., Xin, K., Pan, L., & Lu, W. (2025). Defect Physics and Nanoscale Passivation Strategies in BaSi2 Thin-Film Photovoltaics. Nanomaterials, 15(23), 1750. https://doi.org/10.3390/nano15231750

