Achieving High Sensitivity and Linearity in Resistive Flexible Sensors Using FeNWs@Graphene as Conductive Fillers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Fe NWs
2.3. Fabrication of Fe NWs@Graphene
2.4. Fabrication of the Fe NWs@Graphene Flexible Sensor
2.5. Characterization
3. Results and Discussion
3.1. Characterization of Fe NWs
3.2. Characterization of Fe NWs@Graphene
3.3. Sensing Performances of Fe NWs@Graphene PUS Sensor
3.4. Application of Fe NWs@Graphene Flexible Sensor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, S.; Feng, Q.H.; Shi, Y.B. The graphene sandwich structure flexible strain sensor for health monitoring. Sens. Actuators A Phys. 2025, 395, 117022. [Google Scholar] [CrossRef]
- Mu, C.; Zhou, Y.; Gu, Y.Z.; Zhao, S.Z. High-performance flexible porous pressure sensor based on carbon nanocoils modified reduced graphene oxide. Chem. Eng. J. 2025, 522, 167239. [Google Scholar] [CrossRef]
- Tian, C.; Shao, W.; Li, Y.H.; Zhang, H.Y.; Gao, R.P.; Zheng, W.K. High sensitivity and high-frequency response: A flexible piezoresistive sensor with non-uniform gradient hemispherical structure. Measurement 2025, 256, 118400. [Google Scholar] [CrossRef]
- Liu, F.; Dahiya, A.S.; Dahiya, R. A flexible chip with embedded intelligence. Nat. Electron. 2020, 3, 358–359. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Gao, S.; Yue, W.; Li, Y.; Shen, G. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv. Funct. Mater. 2021, 31, 2104288. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Chen, T.; Song, L.; Zhang, Y.; Lin, Q.; Wang, M.; Wang, F.; Ma, N.; Sun, L. Wearable human-machine interface based on the self-healing strain sensors array for control interface of unmanned aerial vehicle. Sens. Actuators A Phys. 2021, 321, 112583. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, L.; Wu, T.; Song, H.; Luo, J.; Huang, F.; Zuo, C. Flexible pressure sensor with high sensitivity and fast response for electronic skin using near-field electrohydrodynamic direct writing. Org. Electron. 2021, 89, 106044. [Google Scholar] [CrossRef]
- Bu, Y.; Shen, T.; Yang, W.; Yang, S.; Zhao, Y.; Liu, H.; Zheng, Y.; Liu, C.; Shen, C. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 2021, 66, 1849–1857. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Bu, Y.; Zhang, N.; Wang, C.; Pan, C.; Mi, L.; Guo, Z.; Liu, C.; Shen, C. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 2019, 66, 104143. [Google Scholar] [CrossRef]
- Li, R.; Gou, X.; Lee, C.H.; Ruan, H.B.; Wang, X.J.; Zhou, Z.H.; Huang, X.; Liu, Z.B.; Yang, P.A. Fe NWs/CNT/PUS composite constructed rigid-flexible coupling 3D porous structure with highly linear response and large strain for strain sensor. Sens. Actuators A Phys. 2023, 353, 114211. [Google Scholar] [CrossRef]
- Yi, H.K.; Wang, S.J.; Mei, S.X.; Li, Z. Conductive polymer composites for resistive flexible strain sensors. Polymer 2024, 307, 127286. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, C.G.; Yang, L.P.; Wu, J.F.; Li, J.H. Preparation of graphene/polydimethylsiloxane flexible resistive pressure sensors based on direct ink writing 3D printing. Sens. Actuators A Phys. 2025, 382, 116148. [Google Scholar] [CrossRef]
- Jeong, H.; Noh, Y.; Ko, S.H.; Lee, D. Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap. Compos. Sci. Technol. 2019, 174, 50–57. [Google Scholar] [CrossRef]
- Das, A.; Shamim, A.M.; Hasan, M.Z.; Mia, R.; Nan-Nan, S.; Lei, X.; Khan, M.A.; Mahmud, S. Optimizing electrical resistivity in flexible conductive films by way of silver nanowire doping. Surf. Innov. 2025, 13, 109–116. [Google Scholar] [CrossRef]
- Yan, T.; Wu, Y.T.; Yi, W.; Pan, Z.J. Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors. Sens. Actuators A Phys. 2021, 327, 112755. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhao, X.X.; Yu, Y.F.; Zhai, W.; Yue, X.Y.; Dai, K.; Liu, C.T.; Shen, C.Y. Design of flexible micro-porous fiber with double conductive network synergy for high-performance strain sensor. Chem. Eng. J. 2024, 495, 153641. [Google Scholar] [CrossRef]
- Wang, S.; Chen, K.; Wang, M.; Li, H.; Chen, G.; Liu, J.; Xu, L.; Jian, Y.; Meng, C.; Zheng, X.; et al. Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing. J. Mater. Chem. C 2018, 6, 4737–4745. [Google Scholar] [CrossRef]
- Feng, J.; Tian, Y.; Wang, S.; Xiao, M.; Hui, Z.; Hang, C.; Duley, W.W.; Zhou, Y.N. Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor. J. Mater. Sci. Technol. 2021, 84, 139–146. [Google Scholar] [CrossRef]
- Wan, S.; Chen, Y.; Fang, S.; Wang, S.; Xu, Z.; Jiang, L.; Baughman, R.H.; Cheng, Q. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 2021, 20, 624–631. [Google Scholar] [CrossRef]
- Gong, H.; Cai, C.; Gu, H.; Jiang, Q.; Zhang, D.; Cheng, Z. Flexible and wearable strain sensor based on electrospun carbon sponge/polydimethylsiloxane composite for human motion detection. RSC Adv. 2021, 11, 4186–4193. [Google Scholar] [CrossRef]
- Yang, P.; Yu, M.; Fu, J.; Wang, L. Synthesis and Microwave Absorption Properties of Hierarchical Fe Micro-Sphere Assembly by Nano-Plates. J. Alloys Compd. 2017, 721, 449–455. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef]
- Cai, Y.; Qin, J.; Li, W.; Tyagi, A.; Liu, Z.; Hossain, M.D.; Chen, H.; Kim, J.-K.; Liu, H.; Zhuang, M.; et al. A Stretchable, Conformable, and Biocompatible Graphene Strain Sensor Based on a Structured Hydrogel for Clinical Application. J. Mater. Chem. A 2019, 7, 27099–27109. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Ge, Z.; Cheng, R.; Kang, L.; Zhou, X.; Zeng, J.; Xu, J.; Tian, X.; Gao, W.; et al. Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper-based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability. ACS Appl. Mater. Interfaces 2019, 11, 39088–39099. [Google Scholar] [CrossRef]
- Jaggers, R.W.; Chen, R.; Bon, S.A.F. Control of vesicle membrane permeability with catalytic particles. Mater. Horiz. 2016, 3, 41–46. [Google Scholar] [CrossRef]
- Bian, R.; Meng, L.; Guo, C.; Tang, Z.; Liu, H. A facile one-step approach for constructing multidimensional ordered nanowire micropatterns via fibrous elastocapillary coalescence. Adv. Mater. 2019, 31, 1900534. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y.D.; Lee, S.E.; Yeo, J.; Lee, S.S.; Lee, D.; et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 2014, 24, 5671–5678. [Google Scholar] [CrossRef]
- Cheng, R.; Zeng, J.; Wang, B.; Li, J.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor. Chem. Eng. J. 2021, 424, 130565. [Google Scholar] [CrossRef]
- Wang, G.; Yang, P.; Chen, B.; Liu, G.; Qiu, J. A novel combination of graphene and silver nanowires for entirely stretchable and ultrasensitive strain sensors: Sandwich-based sensing films. Nanotechnology 2020, 31, 135501. [Google Scholar] [CrossRef]
- Yang, P.A.; Xiang, S.; Li, R.; Ruan, H.B.; Chen, D.C.; Zhou, Z.H.; Huang, X.; Liu, Z.B. Highly Stretchable and Sensitive Flexible Strain Sensor Based on Fe NWs/Graphene/PEDOT:PSS with a Porous Structure. Int. J. Mol. Sci. 2022, 23, 8895. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.A.; Liu, Z.B.; Zou, L.H.; Li, R.; Zhou, Z.H.; Deng, W.J.; Shou, M.J.; Wang, X.Y.; Luo, J.F. Optimal design and fabrication of stable ordered porous conductive structure for flexible strain sensors with high sensitivity and linearity. Diam. Relat. Mater. 2023, 136, 109990. [Google Scholar] [CrossRef]
- Li, R.; Li, X.Y.; Yang, P.A.; Ruan, H.B. High-aspect-ratio iron nanowires: Magnetic field-assisted in situ reduction synthesis and extensive parametric study. Nanotechnology 2020, 31, 145601. [Google Scholar] [CrossRef]
- Jurewicz, I.; Fahimi, A.; Lyons, P.E.; Smith, R.J.; Cann, M.; Large, M.L.; Tian, M.; Coleman, J.N.; Dalton, A.B. Insulator-Conductor Type Transitions in Graphene-Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors. Adv. Funct. Mater. 2014, 24, 7580–7587. [Google Scholar] [CrossRef]
- Large, M.J.; Ogilvie, S.P.; Alomairy, S.; Vöckerodt, T.; Myles, D.; Cann, M.; Chan, H.; Jurewicz, I.; King, A.A.K.; Dalton, A.B. Selective Mechanical Transfer Deposition of Langmuir Graphene Films for High-Performance Silver Nanowire Hybrid Electrodes. Langmuir 2017, 33, 12038–12045. [Google Scholar] [CrossRef] [PubMed]
- Seral-Ascaso, A.; Lahoz, R.; Tripathi, M.; Elidóttir, K.L.; Cebolla, V.L.; Jurewicz, I.; Dalton, A.B.; Garriga, R.; Muñoz, E. Anti-corrosion peptide coatings and laser patterning for application on flexible transparent silver nanowire electrodes. Prog. Org. Coat. 2024, 195, 108681. [Google Scholar] [CrossRef]
- Sayago, I.; Matatagui, D.; Fernández, M.J.; Fontecha, J.L.; Jurewicz, I.; Garriga, R.; Muñoz, E. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta 2016, 148, 393–400. [Google Scholar] [CrossRef]
- Tong, J.H.; Wang, N.; Wang, Q.; Chen, S.B.; Sheng, B. Improved sensitive conductive sponge sensors with tunnel-crack broadening for pressure, humidity and temperature sensing applications. Sens. Actuators B Chem. 2022, 358, 131497. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Liu, L.P.; Meng, X.C.; Wang, J.X.; Zhang, C.C.; Li, J.H.; Lu, Z.L.; Duan, J.A. A broad range and piezoresistive flexible pressure sensor based on carbon nanotube network dip-coated porous elastomer sponge. RSC Adv. 2022, 12, 34117–34125. [Google Scholar] [CrossRef]
- Zhang, B.X.; Hou, Z.L.; Yan, W.; Zhao, Q.L.; Zhan, K.T. Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors. Carbon 2017, 125, 199–206. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, Z.; Li, C.; Li, X.; He, Y.; Zhu, M. Deep eutectic solvent intercalation graphene oxide with strong interfacial adsorption capacity towards efficient lubrication. Carbon 2024, 216, 118508. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Z.; Li, Y.; Zeng, Z.; Wei, X.; Fan, X.; Zhu, M. Well-dispersed Graphene Enhanced Lithium Composite Grease toward High-efficient Lubrication. Chin. J. Mech. Eng. 2023, 36, 113. [Google Scholar] [CrossRef]
- Cao, Z.F.; Li, R.; Shou, M.J.; Luo, R.; Wei, B.; Wang, T. Mechanical properties and tribological behaviors of Ag/graphene composite coating under sliding friction and current-carrying fretting. Tribol. Int. 2024, 197, 109811. [Google Scholar] [CrossRef]
- Chang, X.; Sun, S.; Sun, S.; Liu, T.; Xiong, X.; Lei, Y.; Dong, L.; Yin, Y. ZnO nanorods/carbon black-based flexible strain sensor for detecting human motions. J. Alloys Compd. 2018, 738, 111–117. [Google Scholar] [CrossRef]
- Aziz, S.; Jung, K.C.; Chang, S.H. Stretchable strain sensor based on a nanocomposite of zinc stannate nanocubes and silver nanowires. Compos. Struct. 2019, 224, 111005. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Yao, G.; Liao, F.; Gao, M.; Huang, Z.; Li, K.; Lin, Y. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J. Alloys Compd. 2015, 652, 48–54. [Google Scholar] [CrossRef]












| Sensors | Stretchability | GF (max) | Linear Range | Response Time | Reference |
|---|---|---|---|---|---|
| Fe NWs/CNT/PUS | 110% | 7.4 | 0–110% | 130 ms (10%) | [10] |
| Carbon sponge/PDMS | 60% | 130.49 | 0–30%, 30–50%, 50–60% | 50 ms (0.5%) | [20] |
| Fe NWs/Graphene/PEDOT:PSS | 100% | 10.65 | 10–100% | 260 ms (80%) | [30] |
| rGO/Fe NWs/CMC | 10% | 112.44 | 0–10% | 128 ms (6%) | [31] |
| ZnO nanorods, carbon black/PDMS | 70% | 30 | 0–45%, 45–70% | 1.2 s | [43] |
| ZnSnO3 nanocubes and Ag-NWs | 100% | −1 | 0–100% | - | [44] |
| Ag nanoparticles and CNTs/PDMS | 95.6% | 2.1 | 0–50%, 50–70% | - | [45] |
| Fe NWs@Graphene PUS | 100% | 14.5 | 0–100% | 113 ms (10%) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Cao, Z.; Chen, C.; Zhang, Q.; Chang, F.; Xiao, Y.; Tang, Y.; Wu, L.; Ge, X. Achieving High Sensitivity and Linearity in Resistive Flexible Sensors Using FeNWs@Graphene as Conductive Fillers. Nanomaterials 2025, 15, 1673. https://doi.org/10.3390/nano15211673
Cui L, Cao Z, Chen C, Zhang Q, Chang F, Xiao Y, Tang Y, Wu L, Ge X. Achieving High Sensitivity and Linearity in Resistive Flexible Sensors Using FeNWs@Graphene as Conductive Fillers. Nanomaterials. 2025; 15(21):1673. https://doi.org/10.3390/nano15211673
Chicago/Turabian StyleCui, Lei, Zhengfeng Cao, Chuan Chen, Qiang Zhang, Fangyuan Chang, Yan Xiao, Yiyang Tang, Lining Wu, and Xiangyu Ge. 2025. "Achieving High Sensitivity and Linearity in Resistive Flexible Sensors Using FeNWs@Graphene as Conductive Fillers" Nanomaterials 15, no. 21: 1673. https://doi.org/10.3390/nano15211673
APA StyleCui, L., Cao, Z., Chen, C., Zhang, Q., Chang, F., Xiao, Y., Tang, Y., Wu, L., & Ge, X. (2025). Achieving High Sensitivity and Linearity in Resistive Flexible Sensors Using FeNWs@Graphene as Conductive Fillers. Nanomaterials, 15(21), 1673. https://doi.org/10.3390/nano15211673

