Spectral and Acoustic Characterization of Nanoenergetic Devices Based on Sodium Perchlorate-Impregnated Porous Silicon
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Spectral Analysis of the Photoluminescent Emission of Nano-Explosive Devices
3.2. Analysis of Acoustic Noise Signals Originated by the Explosion Process of Nanoexplosive Devices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A








References
- Song, C.; Zheng, Z.; Zhang, W.; Yang, Y.; Zeng, G.; Yu, C.; Wang, J.; Chen, Y.; Ma, K.; Cheng, Z. Thermal-Induced Hydrosilylation to Endow Nanoporous Silicon Energetic Films with Long-Term Chemical Stability. Chem. Eng. J. 2020, 401, 126074. [Google Scholar] [CrossRef]
- Plummer, A.; Kuznetsov, V.A.; Gascooke, J.; Shapter, J.; Voelcker, N.H. Sensitiveness of Porous Silicon-Based Nano-Energetic Films. Propellants Explos. Pyrotech. 2016, 41, 1029–1035. [Google Scholar] [CrossRef]
- Valalaki, K.; Nassiopoulou, A.G. Low Thermal Conductivity Porous Si at Cryogenic Temperatures for Cooling Applications. J. Phys. D Appl. Phys. 2013, 46, 295101. [Google Scholar] [CrossRef]
- Savenkov, G.G.; Kardo-Sysoev, A.F.; Zegrya, A.G.; Os’kin, I.A.; Bragin, V.A.; Zegrya, G.G. Initiation of Explosive Conversions in Energy-Saturated Nanoporous Silicon-Based Compounds with Fast Semiconductor Switches and Energy-Releasing Elements. Tech. Phys. Lett. 2017, 43, 896–898. [Google Scholar] [CrossRef]
- Wang, S.; Shen, R.; Ye, Y.; Hu, Y. An Investigation into the Fabrication and Combustion Performance of Porous Silicon Nanoenergetic Array Chips. Nanotechnology 2012, 23, 435701. [Google Scholar] [CrossRef]
- Wang, M.; Ou, W.; Yu, Z. Porous Silicon-Supported Catalytic Materials for Energy Conversion and Storage. ChemSusChem 2025, 18, e202401459. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Lee, S.H.; Park, H.S. Morphological and Electrical Features of Porous Silicon Prepared by Metal-Induced Chemical Etching. Silicon 2024, 16, 6349–6359. [Google Scholar] [CrossRef]
- Mescheder, U. Porous Silicon: Technology and Applications for Micromachining and MEMS; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Nabil, M.; Elnouby, M.; Al-Askar, A.A.; Kowalczewski, P.Ł.; Abdelkhalek, A.; Behiry, S.I. Porous Silicon Nanostructures: Synthesis, Characterization, and Their Antifungal Activity. Open Chem. 2024, 22, 20230169. [Google Scholar] [CrossRef]
- Sinha, S.; Piekiel, N.W.; Smith, G.L.; Morris, C.J. Investigating Aging Effects for Porous Silicon Energetic Materials. Combust. Flame 2017, 181, 164–171. [Google Scholar] [CrossRef]
- Mou, S.S.; Islam, J.; Ismail, A.B.M. Photoluminescence Properties of LaF3—Coated Porous Silicon. Mater. Sci. Appl. 2011, 2, 649–653. [Google Scholar] [CrossRef]
- Shen, R.; Ji, F.; Wang, S.; Zhang, W.; Ye, Y. Reactivity and Combustion of Porous Silicon Energetic Chips. Int. J. Energetic Mater. Chem. Propuls. 2020, 19, 113–124. [Google Scholar] [CrossRef]
- Becker, C.R.; Currano, L.J.; Churaman, W.A.; Stoldt, C.R. Thermal Analysis of the Exothermic Reaction between Galvanic Porous Silicon and Sodium Perchlorate. ACS Appl. Mater. Interfaces 2010, 2, 2998–3003. [Google Scholar] [CrossRef]
- Becker, C.R.; Apperson, S.; Morris, C.J.; Gangopadhyay, S.; Currano, L.J.; Churaman, W.A.; Stoldt, C.R. Galvanic Porous Silicon Composites for High-Velocity Nanoenergetics. Nano Lett. 2011, 11, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Churaman, W.; Currano, L.; Singh, A.K.; Rai, U.S.; Dubey, M.; Amirtharaj, P.; Ray, P.C. Understanding the High Energetic Behavior of Nano-Energetic Porous Silicon. Chem. Phys. Lett. 2008, 464, 198–201. [Google Scholar] [CrossRef]
- Clément, D.; Diener, J.; Gross, E.; Künzner, N.; Timoshenko, V.Y.; Kovalev, D. Highly Explosive Nanosilicon-Based Composite Materials. In Physica Status Solidi (A) Applications and Materials Science; Wiley-VCH: Weinheim, Germany, 2005; Volume 202, pp. 1357–1364. [Google Scholar]
- Murray, C.W.; Bolger, P.M. Environmental Contaminants: Perchlorate. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 337–341. ISBN 9780123786128. [Google Scholar]
- Mason, B.A.; Son, S.F.; Cho, K.Y.; Yetter, R.A.; Asay, B.W. Combustion Performance of Porous Silicon-Based Energetic Composites. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, CO, USA, 2–5 August 2009. [Google Scholar]
- Lazarouk, S.K.; Dolbik, A.V.; Labunov, V.A. Mechanical Impulse Enhancement in a Microsystem Based on Nanoporous Silicon Combustion. Mater. Phys. Mech. 2019, 41, 8–14. [Google Scholar] [CrossRef]
- Deng, P.; Ren, H.; Jiao, Q. Enhanced Thermal Decomposition Performance of Sodium Perchlorate by Molecular Assembly Strategy. Ionics 2020, 26, 1039–1044. [Google Scholar] [CrossRef]
- Mebed, A.M.; Abd-Elnaiem, A.M.; De Malsche, W. Influence of Anodizing Parameters on the Electrochemical Characteristics and Morphology of Highly Doped P-Type Porous Silicon. Silicon 2020, 13, 819–829. [Google Scholar] [CrossRef]
- Lundgaard, S.; Ng, S.H.; Cahill, D.; Dahlberg, J.; Allender, J.; Barber, M.; Stephens, J.; Juodkazis, S. Electrical Breakdown Spectroscopy of Nano-/Micro-Thermites. Technologies 2021, 9, 34. [Google Scholar] [CrossRef]
- Trache, D.; Deluca, L.T. Nanoenergetic Materials: Preparation, Properties, and Applications. Nanomaterials 2020, 10, 2347. [Google Scholar] [CrossRef]
- Rossi, C.; Zhang, K.; Estève, D.; Alphonse, P.; Tailhades, P.; Vahlas, C. Nanoenergetic Materials for MEMS: A Review. J. Microelectromechanical Syst. 2007, 16, 919–931. [Google Scholar] [CrossRef]
- Gao, B.; Qiao, Z.; Yang, G. Review on Nanoexplosive Materials. In Nanomaterials in Rocket Propulsion Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–79. ISBN 9780128139097. [Google Scholar]
- Chinke, S.L.; Sandhu, I.S.; Alegaonkar, P.S. Blast Mitigation Properties of Porous Nano-Carbon. Diam. Relat. Mater. 2021, 120, 108691. [Google Scholar] [CrossRef]
- Currano, L.J.; Churaman, W.A. Characterization and Improvements to Porous Silicon Processing for Nanoenergetics; Army Research Laboratory: Adelphi, MD, USA, 2009. [Google Scholar]
- Mai, X.; Chang, Y.; You, Y.; He, L.; Chen, T. Designing Intelligent Nano-Bomb with on-Demand Site-Specific Drug Burst Release to Synergize with High-Intensity Focused Ultrasound Cancer Ablation. J. Control. Release 2021, 331, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, M. A Decade of Porous Silicon as Nano-Explosive Material. Propellants Explos. Pyrotech. 2014, 39, 348–364. [Google Scholar] [CrossRef]
- Luo, X.; Yang, L.; Cui, Y. Micropumps: Mechanisms, Fabrication, and Biomedical Applications. Sens. Actuators A Phys. 2023, 363, 114732. [Google Scholar] [CrossRef]
- Karahmet Sher, E.; Alebić, M.; Marković Boras, M.; Boškailo, E.; Karahmet Farhat, E.; Karahmet, A.; Pavlović, B.; Sher, F.; Lekić, L. Nanotechnology in Medicine Revolutionizing Drug Delivery for Cancer and Viral Infection Treatments. Int. J. Pharm. 2024, 660, 114732. [Google Scholar] [CrossRef]
- Thelen, M.; Bochud, N.; Brinker, M.; Prada, C.; Huber, P.I. A Glimpse of Porous Media: Laser-Excited Elastic Guided Waves Reveal the Complex Mechanics of Nanoporous Silicon. In Album of Porous Media: Structure and Dynamics; Springer International Publishing: Cham, Switzerland, 2023; p. 15. ISBN 9783031238000. [Google Scholar]
- Müller, G.; Friedberger, A.; Knese, K. Porous Silicon-Based MEMS. In Handbook of Silicon Based MEMS Materials and Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–502. ISBN 9780128177860. [Google Scholar]
- Ageev, M.V.; Vedernikov, Y.N.; Zegrya, G.G.; Mazur, A.S.; Poberezhnaya, U.M.; Popov, V.K.; Savenkov, G.G. Properties of Two and Three-Component Explosive Compositions Based on Porous Silicon. Russ. J. Phys. Chem. B 2021, 15, 259–265. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Lin, K.; Luo, Y. Recent Application of Porous Materials in Explosives: A Mini-Review. FirePhysChem 2024, 4, 264–275. [Google Scholar] [CrossRef]
- Armarego, W.L.F. Purification of Laboratory Chemicals, 9th ed.; Elsevier: Cambridge, UK, 2022; pp. 631–680. ISBN 978-0-323-90968-6. [Google Scholar]
- Parimi, V.S.; Bermúdez Lozda, A.; Tadigadapa, S.A.; Yetter, R.A. Reactive Wave Propagation in Energetic Porous Silicon Composites. Combust. Flame 2014, 161, 2991–2999. [Google Scholar] [CrossRef]
- Goudjil, A.; Pigeon, E.; Pouliquen, M.; Menard, T.; Gehan, O.; Girard, S.; Dufay, B.; Boudjelal, A. An Interior-Points Algorithm for Color and CCT Control of Multichannel LED Lighting System Using a Smart 18-Channel Spectral Sensor. Energy Build. 2023, 298, 113541. [Google Scholar] [CrossRef]
- Mitri, F.; De Iacovo, A.; De Santis, S.; Giansante, C.; Spirito, D.; Sotgiu, G.; Colace, L. A Compact Optical Sensor for Explosive Detection Based on NIR Luminescent Quantum Dots. Appl. Phys. Lett. 2021, 119, 041106. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, J.; Yang, S.; Hu, T. Development of a Multi-Spectral Thermal Imager for Measurement of the Laser-Induced Damage Temperature Field. Infrared Phys. Technol. 2022, 123, 104158. [Google Scholar] [CrossRef]
- Yamane, T.; Mori, Y.; Katayama, S.I.; Todoki, M. Measurement of Thermal Diffusivities of Thin Metallic Films Using the Ac Calorimetric Method. J. Appl. Phys. 1997, 82, 1153–1156. [Google Scholar] [CrossRef]
- Bomchil, G.; Barla, K.; Bertrand, C.; Ginoux, J.L.; Barla, K. Porosity and Pore Size Distributions of Porous Silicon Layers. J. Electrochem. Soc. 1987, 134, 1994–2000. [Google Scholar] [CrossRef]
- Halimaoui, A. Determination of the Specific Surface Area of Porous Silicon from Its Etch Rate in HF Solutions. Surf. Sci. 1994, 306, L550–L554. [Google Scholar] [CrossRef]
- Currano, L.J.; Churaman, W.A. Energetic Nanoporous Silicon Devices. J. Microelectromech. Syst. 2009, 18, 799–807. [Google Scholar] [CrossRef]
- Yang, R.-R.; Song, C.-K.; Chen, Y.-J.; Zeng, G.-W.; Wang, J.-X.; Chen, J.-H.; Zhang, W.-C. Silicon Nanowire-Based Energetic Materials with Significantly Improved Hygroscopicity. Energetic Mater. Front. 2021, 2, 105–110. [Google Scholar] [CrossRef]
- Keshavarzi, S.; Lima, F.; Kronast, W.; Mescheder, U. Sequential Nano-Explosion Using Patterned Porous Silicon. J. Microelectromech. Syst. 2018, 27, 250–258. [Google Scholar] [CrossRef]
- du Plessis, M. Nanoporous Silicon Explosive Devices. Mater. Sci. Eng. B 2008, 147, 226–229. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, J.S.; Kim, D. A Mini Review: Recent Advances in Surface Modification of Porous Silicon. Materials 2018, 11, 2557. [Google Scholar] [CrossRef] [PubMed]
- Moritz, D.C.; Calvet, W.; Zare Pour, M.A.; Paszuk, A.; Mayer, T.; Hannappel, T.; Hofmann, J.P.; Jaegermann, W. Dangling Bond Defects on Si Surfaces and Their Consequences on Energy Band Diagrams: From a Photoelectrochemical Perspective. Sol. RRL 2023, 7, 2201063. [Google Scholar] [CrossRef]










| Sample | Type of the Si | Current Density J (mA/cm2) | Anodization Time t (min.) | Electrolyte Solution HF:Ethanol |
|---|---|---|---|---|
| P182 | P | 50 | 10 | 3:1 |
| P198 | P | 50 | 20 | 3:1 |
| P199 | P | 50 | 25 | 3:1 |
| P219 | p | 75 | 20 | 3:1 |
| P211 | P | 100 | 20 | 3:1 |
| P217 | P | 150 | 20 | 3:1 |
| P218 | P | 200 | 20 | 3:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apaza Quispe, A.; Bueno Borges, A.C.; Salcedo, W.J. Spectral and Acoustic Characterization of Nanoenergetic Devices Based on Sodium Perchlorate-Impregnated Porous Silicon. Nanomaterials 2025, 15, 1672. https://doi.org/10.3390/nano15211672
Apaza Quispe A, Bueno Borges AC, Salcedo WJ. Spectral and Acoustic Characterization of Nanoenergetic Devices Based on Sodium Perchlorate-Impregnated Porous Silicon. Nanomaterials. 2025; 15(21):1672. https://doi.org/10.3390/nano15211672
Chicago/Turabian StyleApaza Quispe, Abel, Ana C. Bueno Borges, and Walter Jaimes Salcedo. 2025. "Spectral and Acoustic Characterization of Nanoenergetic Devices Based on Sodium Perchlorate-Impregnated Porous Silicon" Nanomaterials 15, no. 21: 1672. https://doi.org/10.3390/nano15211672
APA StyleApaza Quispe, A., Bueno Borges, A. C., & Salcedo, W. J. (2025). Spectral and Acoustic Characterization of Nanoenergetic Devices Based on Sodium Perchlorate-Impregnated Porous Silicon. Nanomaterials, 15(21), 1672. https://doi.org/10.3390/nano15211672

