Comprehensive Structural, Chemical, and Optical Characterization of Cu2ZnSnS4 Films on Kapton Using the Automated Successive Ionic Layer Adsorption and Reaction Method
Abstract
1. Introduction
2. Experimental Details
Characterization Techniques
3. Results and Discussions
CZTS over a Flexible Substrate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjan, S.; Balaji, S.; Panella, R.A.; Ydstie, B.E. Silicon solar cell production. Comput. Chem. Eng. 2011, 35, 1439–1453. [Google Scholar] [CrossRef]
- Matthews, P.D.; McNaughter, P.D.; Lewis, D.J.; O’Brien, P. Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chem. Sci. 2017, 8, 4177–4187. [Google Scholar] [CrossRef]
- Chopra, K.L.; Paulson, P.D.; Dutta, V. Thin-film solar cells: An overview. Prog. Photovolt. Res. Appl. 2004, 12, 69–92. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Green, M.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.; Barkhouse, D.; Gunawan, O.; Gokmen, T.; Todorov, T.; Mitzi, D. Solar cell efficiency tables (version 40). IEEE Trans. Fuzzy Syst. 2012, 20, 1114–1129. [Google Scholar] [CrossRef]
- Wallace, S.K.; Mitzi, D.B.; Walsh, A. The steady rise of kesterite solar cells. ACS Energy Lett. 2017, 2, 776–779. [Google Scholar] [CrossRef]
- Kumar, K.G.; Bhargav, P.B.; Prakash, D.G.; Kaushik, R.; Mathew, E.R.; Shriram, M.K. Investigations on SILAR coated CZTS thin films for solar cells applications. Phase Transit. 2021, 94, 556–566. [Google Scholar] [CrossRef]
- Yussuf, S.; Nwambaekwe, K.; Ramoroka, M.; Iwuoha, E. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells. Mater. Today Sustain. 2023, 21, 100287. [Google Scholar] [CrossRef]
- Kaza, J.; Pasumarthi, M.R.; Avadhani, P.S. Superstrate and substrate thin film configuration of CdS/CZTS solar cell fabricated using SILAR method. Opt. Laser Technol. 2020, 131, 106413. [Google Scholar] [CrossRef]
- Altowairqi, Y.; Alsubaie, A.; Stroh, K.P.; Perez-Marin, I.G.; Bowen, L.; Szablewski, M.; Halliday, D.P. The effect of annealing conditions: Temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties. Mater. Today: Proc. 2019, 18, 2214–7853. [Google Scholar] [CrossRef]
- Suryawanshi, M.; Shin, S.W.; Ghorpade, U.; Gurav, K.; Hong, C.; Patil, P.; Moholkar, A.; Kim, J.H. Improved solar cell performance of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurizing stacked precursor thin films via SILAR method. J. Alloys Compd. 2016, 671, 509–516. [Google Scholar] [CrossRef]
- Suryawanshi, M.; Shin, S.; Ghorpade, U.; Gurav, K.; Hong, C.; Agawane, G.; Vanalakar, S.; Moon, J.; Yun, J.H.; Patil, P.; et al. Improved photoelectrochemical performance of Cu2ZnSnS4 (CZTS) thin films prepared using modified successive ionic layer adsorption and reaction (SILAR) sequence. Electrochim. Acta 2014, 150, 136–145. [Google Scholar] [CrossRef]
- Kakherskyi, S.I.; Dobrozhan, O.A.; Pshenychnyi, R.M.; Vorobiov, S.I.; Havryliuk, Y.O.; Komanicky, V.; Plotnikov, S.V.; Opanasyuk, A.S. Influence of Low-Temperature Annealing on the Structure and Chemical Composition of Cu2ZnSnS4 Films Deposed on Flexible Polyimide Substrates. Mater. Sci. 2022, 57, 572–581. [Google Scholar] [CrossRef]
- Buldu, D.G.; Cantas, A.; Turkoglu, F.; Akca, F.G.; Meric, E.; Ozdemir, M.; Tarhan, E.; Ozyuzer, L.; Aygun, G. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells. Phys. Scr. 2018, 93, 024002. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Yang, Y.; Xie, Z. Effects of copper content on properties of CZTS thin films grown on flexible substrate. Superlattices Microstruct. 2016, 100, 1283–1290. [Google Scholar] [CrossRef]
- Zhao, Q.; Shen, H.; Xu, Y.; Gao, K.; Chen, D.; Li, Y. Effect of CZTS/CCZTS Stacked Structures Prepared through Split-Cycle on the Performance of Flexible Solar Cells. ACS Appl. Energy Mater. 2022, 5, 3668–3676. [Google Scholar] [CrossRef]
- Blö chl, P.E. Projector Augmented-Wave Method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B Condens. Matter Mater. Phys. 1992, 46, 6671–6687. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B Condens. Matter Mater. Phys. 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Lakhe, M.G.; Bhand, G.R.; Londhe, P.U.; Rohom, A.B.; Chaure, N.B. Electrochemical Synthesis and Characterization of Cu2ZnSnS4 Thin Films. J. Material Sci. Eng. 2016, 5, 4. [Google Scholar] [CrossRef]
- JADE Software, Version 6.5; Materials Data, Inc.: Livermore, CA, USA, 2020. Available online: https://www.materialsdata.com (accessed on 1 September 2024).
- Kumar, M. Cu2ZnSnS4 and Cu2ZnSnSe4 as potential earth-abundant thin-film absorber materials: A density functional theory study. Int. J. Theor. Appl. Sci. 2013, 5, 1–8. [Google Scholar]
- Jiang, H.; Dai, P.; Feng, Z.; Fan, W.; Zhan, J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 2012, 22, 7502–7506. [Google Scholar] [CrossRef]
- Liu, X.; Hao, R.; Zhao, Q.; Chang, F.; Li, Y.; Gu, K.; Wang, L.; Liu, B.; Guo, J. Studies on Sputtered Cu–Zn–Sn–O Precursor to Fabricate Cu2ZnSnS4 Thin Films. Z. Naturforschung A 2018, 73, 957–964. [Google Scholar] [CrossRef]
- Ahmadi, S.; Khemiri, N.; Cantarero, A.; Kanzari, M. Xps Analysis and Structural Characterization of Czts Thin Films Deposited by One-Step Thermal Evaporation. SSRN Electron. J. 2022, 925, 166520. [Google Scholar]
- Gordillo, G.; Calderon, C.; Bartolo-Perez, P. XPS analysis and structural and morphological characterization of Cu2ZnSnS4 thin films grown by sequential evaporation. Appl. Surf. Sci. 2014, 305, 506–514. [Google Scholar] [CrossRef]
- Xu, D.; Fan, D.; Shen, W. Catalyst-free direct vapor-phase growth of Zn1−xCuxO micro-cross structures and their optical properties. Nanoscale Res. Lett. 2013, 8, 46. [Google Scholar] [CrossRef]
- Kraut-Vass, A. NIST X-Ray Photoelectron Spectroscopy Database. [En línea]. 2020. Available online: http://srdata.nist.gov/xps/ (accessed on 1 September 2024).
- Dai, J.; Xu, C.; Guo, J.; Xu, X.; Zhu, G.; Lin, Y. Brush-like SnO2/ZnO hierarchical nanostructure: Synthesis, characterization and application in UV photoresponse. AIP Adv. 2013, 3, 6. [Google Scholar] [CrossRef]
- Jin, L.; Cai, L.; Chen, D.; Wang, W.; Shen, H.; Zhang, F. Efficient silicon solar cells applying cuprous sulfide as hole-selective contact. Electron. Mater. 2019, 54, 12650–12658. [Google Scholar] [CrossRef]
- Jiang, M.; Huang, Y.; Sun, W.; Zhang, X. Co-doped SnS2 nanosheet array for efficient oxygen evolution reaction electrocatalyst. J. Mater. Sci. 2019, 54, 13715–13723. [Google Scholar] [CrossRef]
- Sudha, V.; Murugadoss, G.; Thangamuthu, R. Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Sci. Rep. 2021, 11, 3413. [Google Scholar] [CrossRef]
- Chamekh, S.; Khemiri, N.; Kanzari, M. Effect of annealing under different atmospheres of CZTS thin films as absorber layer for solar cell application. SN Appl. Sci. 2020, 2, 1507. [Google Scholar] [CrossRef]
- Pelant, I.; Valenta, J. Luminescence Spectroscopy of Semiconductors; Oxford University Press (OUP): Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Gunawan, O.; Todorov, T.K.; Wang, K.; Guha, S. The Path Towards a High-Performance Solution-Processed Kesterite Solar Cell. Sol. Energy Mater. Sol. Cells 2011, 95, 1421–1436. [Google Scholar] [CrossRef]
CZTS-as Deposited | |||||
---|---|---|---|---|---|
Sample | Plane | 2θ (°) | FWHM (°) | D (nm) | E(r) |
40 cycles | (220) | 46.7 | 0.22 | 39.3 | 1.511 |
60 cycles | (220) | 47.06 | 0.54 | 16.0 | 1.565 |
70 cycles | (220) | 47.04 | 0.48 | 18.1 | 1.551 |
80 cycles | (220) | 47.54 | 0.14 | 62 | 1.504 |
CZTS-70 Cycles Annealed | |||||
Annealed | Plane | 2θ (°) | FWHM (°) | D (nm) | E(r) |
200 °C | 220 | 47.14 | 0.65 | 13.33 | 1.594 |
400 °C | 220 | 47.68 | 0.46 | 18.9 | 1.548 |
450 °C | 220 | 47.54 | 0.31 | 28.0 | 1.521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-González, P.J.; Paniagua-Chávez, M.L.; Zebadua-Chavarria, L.A.; Mota-Grajales, R.; Meza-Avendaño, C.A.; Campos-González, E.; Escobosa-Echavarría, A.; Hu, Y.; Pérez-Ramos, A.E.; Manuel-Matuz; et al. Comprehensive Structural, Chemical, and Optical Characterization of Cu2ZnSnS4 Films on Kapton Using the Automated Successive Ionic Layer Adsorption and Reaction Method. Nanomaterials 2025, 15, 85. https://doi.org/10.3390/nano15020085
Vázquez-González PJ, Paniagua-Chávez ML, Zebadua-Chavarria LA, Mota-Grajales R, Meza-Avendaño CA, Campos-González E, Escobosa-Echavarría A, Hu Y, Pérez-Ramos AE, Manuel-Matuz, et al. Comprehensive Structural, Chemical, and Optical Characterization of Cu2ZnSnS4 Films on Kapton Using the Automated Successive Ionic Layer Adsorption and Reaction Method. Nanomaterials. 2025; 15(2):85. https://doi.org/10.3390/nano15020085
Chicago/Turabian StyleVázquez-González, Perla J., Martha L. Paniagua-Chávez, Lizette A. Zebadua-Chavarria, Rafael Mota-Grajales, C. A. Meza-Avendaño, Enrique Campos-González, A. Escobosa-Echavarría, Yaoqiao Hu, Aldo E. Pérez-Ramos, Manuel-Matuz, and et al. 2025. "Comprehensive Structural, Chemical, and Optical Characterization of Cu2ZnSnS4 Films on Kapton Using the Automated Successive Ionic Layer Adsorption and Reaction Method" Nanomaterials 15, no. 2: 85. https://doi.org/10.3390/nano15020085
APA StyleVázquez-González, P. J., Paniagua-Chávez, M. L., Zebadua-Chavarria, L. A., Mota-Grajales, R., Meza-Avendaño, C. A., Campos-González, E., Escobosa-Echavarría, A., Hu, Y., Pérez-Ramos, A. E., Manuel-Matuz, & Hernández-Gutiérrez, C. A. (2025). Comprehensive Structural, Chemical, and Optical Characterization of Cu2ZnSnS4 Films on Kapton Using the Automated Successive Ionic Layer Adsorption and Reaction Method. Nanomaterials, 15(2), 85. https://doi.org/10.3390/nano15020085