Facile Synthesis of Functional Mesoporous Organosilica Nanospheres and Adsorption Properties Towards Pb(II) Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.2. Adsorption Performance Tests
Titration of Pb2+ with EDTA
3. Results and Discussions
3.1. Morphological and Structural Characterizations
3.2. Adsorption Performances of MONs-SH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, X.W.; Wang, F.; Li, X.Y.; Shih, K.M.; Zeng, E.Y. Adsorption and thermal stabilization of Pb2+ and Cu2+ by zeolite. Ind. Eng. Chem. Res. 2016, 55, 8767–8773. [Google Scholar] [CrossRef]
- Fu, C.C.; Zhang, L.; Zhang, K.; Xiao, B.Y.; Liu, J.X.; Luan, Q.; Liu, J. Effects of air-prepared atmosphere on the Pb2+ adsorption of sludge-based adsorbent. Biomass Convers. Biorefin. 2021, 13, 5757–5769. [Google Scholar] [CrossRef]
- Gou, J.; Zhang, W.; Wang, X.F.; Hao, D.; Shen, H.; You, N.; Long, W.-Y. Amino-carboxyl cellulose for adsorption of Cd2+ and Pb2+. Chemosphere 2023, 339, 139705. [Google Scholar] [CrossRef]
- Wang, Q.R.; Zheng, C.L.; Cui, W.; He, F.; Zhang, J.; Zhang, T.C.; He, C. Adsorption of Pb2+ and Cu2+ ions on the CS2-modified alkaline lignin. Chem. Eng. J. 2020, 391, 123581. [Google Scholar] [CrossRef]
- Liang, R.H.; Li, Y.; Huang, L.; Wang, X.-D.; Hu, X.-X.; Liu, C.-M.; Chen, M.-S.; Chen, J. Pb2+ adsorption by ethylenediamine-modified pectins and their adsorption mechanisms. Carbohydr. Polym. 2020, 234, 115911. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Guo, X.Q.; Guo, B.C.; Tang, Q.; Yu, W.; Wan, Q.; An, Y. Adsorption of Pb2+ and methylene blue by Al-incorporated magadiite. Appl. Clay Sci. 2023, 231, 106745. [Google Scholar] [CrossRef]
- Xu, W.T.; Sun, X.J.; Huang, M.L.; Pan, X.; Huang, X.; Zhuang, H. Novel covalent organic framework/PVDF ultrafiltration membranes with antifouling and lead removal performance. J. Environ. Manag. 2020, 269, 110758. [Google Scholar] [CrossRef]
- Wang, R.S.; Li, Y.; Shuai, X.X.; Liang, R.-H.; Chen, J.; Liu, C.-M. Pectin/activated carbon-based porous microsphere for Pb2+ adsorption: Characterization and adsorption behaviour. Polymers 2021, 13, 2453. [Google Scholar] [CrossRef]
- Xu, Z.T.; Gu, S.W.; Rana, D.; Matsuura, T.; Lan, C.Q. Chemical precipitation enabled UF and MF filtration for lead removal. J. Water Process Eng. 2021, 41, 101987. [Google Scholar] [CrossRef]
- Cai, J.Y.; Zhang, J.; Shi, J.J.; Zhao, H.; Wei, Y.; Miao, X.; Shen, K.; Zhao, R.; Xiao, L.; Hou, L. Defective UiO-66-NH2 (Zr) for Simultaneous Adsorption of Phosphate and Pb2+ for Hydrogen Peroxide Purification. Inorg. Chem. 2024, 63, 7314–7324. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.J.; Zhou, Q.; Yan, T.Y.; Jia, X.; Lu, D.; Ren, Y.; He, J. Enhanced removal efficiency of Cd2+ and Pb2+ from aqueous solution by H3PO4–modified tea branch biochar: Characterization, adsorption performance and mechanism. J. Environ. Chem. Eng. 2024, 12, 112183. [Google Scholar] [CrossRef]
- Li, P.G.; Wang, J.X.; Li, X.T.; Zhu, W.; He, S.; Han, C.; Luo, Y.; Ma, W.; Liu, N.; Dionysiou, D.D. Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb2+ removal. J. Hazard. Mater. 2019, 378, 120664. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, M.; Yu, M.; Jambhrunkar, M.; Liu, Y.; Yang, Y.; Huang, X.; Yu, C. Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production. Mater. Chem. Front. 2018, 2, 1334–1342. [Google Scholar] [CrossRef]
- Ruan, W.; Liu, H.; Wu, H.; Qi, Y.; Zhou, M.; Zhou, C.; Zhang, Z.; Yang, H. Fabrication of Uio-66-NH2 with 4,6-Diamino-2-mercaptopyrimidine facilitate the removal of Pb2+ in aqueous medium: Nitrogen and sulfur act as the main adsorption sites. Fuel Process. Technol. 2022, 236, 107431. [Google Scholar] [CrossRef]
- Xiao, Z.B.; Bao, H.Q.; Jia, S.H.; Bao, Y.; Niu, Y.; Kou, X. Organic hollow mesoporous silica as a promising sandalwood essential oil carrier. Molecules 2021, 26, 2744. [Google Scholar] [CrossRef]
- Zhao, Q.; Hu, W.L.; Li, S.M.; Gu, Z.; Zhang, Y.; Yao, Y.; Zhang, Y.; Liu, C.; Zhao, L.; Yu, C. Incorporation of metal organic framework into mesoporous silica nanoparticles with high contents. Microporous Mesoporous Mater. 2023, 360, 112707. [Google Scholar] [CrossRef]
- Wang, W.; Zhong, F.M.; Wang, D.; Zhao, Y.; Peng, D.; Li, S.; Ning, Q.; Tang, S.; Yu, C.-Y.; Wei, H. Dual gatekeepers-modified mesoporous organic silica nanoparticles for synergistic photothermal-chemotherapy of breast cancer. J. Colloid Interface Sci. 2023, 646, 118–128. [Google Scholar] [CrossRef]
- Gu, S.C.; Wang, R.Y.; Zhang, J.X.; Dong, H.; Deng, L.; Wang, X.; He, Y. One-step synthesis of hollow and yolk-shell mesoporous organosilica nanospheres for efficient separation of lead ions. Microporous Mesoporous Mater. 2024, 364, 112884. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Mao, Y.J.; Zhang, C.Y.; Di, N.; Qi, D.; Shentu, B. Thermodynamics and kinetics of Cu2+ adsorption of organic-inorganic hybrid hollow mesoporous silica spheres. J. Sol-Gel Sci. Technol. 2021, 98, 310–318. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Wen, N.; Wei, D.; Zhang, Y. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica. Sep. Purif. Technol. 2021, 265, 118341. [Google Scholar] [CrossRef]
- Han, L.; Li, L.; Gao, R.; Liu, X.; Kan, C. Functional core/shell PMMA/P(MMA-co-PDSECAE)-SH particles with thiol groups in the shell and their adsorption of heavy metal ions. J. Appl. Polym. Sci. 2022, 139, e52859. [Google Scholar] [CrossRef]
- Tschetter, M.J.; Bachman, R.Z. Rapid EDTA determination of lead in binary alloys of lead and tin. Talanta 1974, 21, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Yi, M.Q.; Xiong, B.; Huang, Y.; Guo, W.; Lin, Y.; Lu, B. pH-responsive degradable mesoporous organosilica nanoparticle for tumor targeting and phototherapy combined with chemotherapy. J. Drug Deliv. Sci. Technol. 2024, 92, 105344. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Ribeiro, S.O.; Kaczmarek, A.M.; Cunha-Silva, L.; Almeida, P.L.; Gago, S.; Van Deun, R.; de Castro, B.; Balula, S.S. A novel red emitting material based on polyoxometalate@periodic mesoporous organosilica. Microporous Mesoporous Mater. 2016, 234, 248–256. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.P.; Cui, X.R.; Fu, Y.; Li, G.L.; Wang, W. Surface-modified mesoporous silica nanorods for the highly aging resistance rubber through controlled release of antioxidant. Polym. Adv. Technol. 2021, 32, 3384–3391. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, Y.Q.; Jiang, H.; Li, C.; Sun, S.; Hu, S. Engineered multi-shelled hollow mesoporous organosilica for efficient Pb(II) and Cr(VI) removal. Sep. Purif. Technol. 2024, 346, 127566. [Google Scholar] [CrossRef]
- Wang, R.Y.; Gu, S.C.; Zhai, C.Y.; Deng, L.; Li, R.; Wang, X.; He, Y. One-step synthesis of thiol-functional mesoporous silica nanospheres and selective removal of cationic dyes. ChemistrySelect 2024, 9, e202401349. [Google Scholar] [CrossRef]
- Liang, R.X.; Zou, H. Removal of aqueous Hg(ii) by thiol-functionalized nonporous silica microspheres prepared by one-step sol-gel method. RSC Adv. 2020, 10, 18534–18542. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; Wang, J.; Zhu, W.; Luo, Y.; Han, C.; Ma, W.; He, S. Synthesis of large-sized mesoporous silica spheres by pseudomorphic transformation of commercial silica spheres. Microporous Mesoporous Mater. 2016, 226, 309–315. [Google Scholar] [CrossRef]
- Meoto, S.; Kent, N.; Nigra, M.M.; Coppens, M.-O. Mesostructure of Mesoporous Silica/Anodic Alumina Hierarchical Membranes Tuned with Ethanol. Langmuir 2017, 33, 4823–4832. [Google Scholar] [CrossRef]
- Plastinin, I.V.; Burikov, S.A.; Gofurov, S.P.; Ismailova, O.B.; Mirgorod, Y.A.; Dolenko, T.A. Features of self-organization of sodium dodecyl sulfate in water-ethanol solutions: Theory and vibrational spectroscopy. J. Mol. Liq. 2020, 298, 112053. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, Y.Q.; Jiang, H.; Li, C.; Sun, S.; Hu, S. Tunable hollow mesoporous organosilica for efficient adsorption of heavy metal ions from water. Inorg. Chem. Front. 2024, 11, 4695–4710. [Google Scholar] [CrossRef]
- Košak, A.; Lobnik, A.; Bauman, M. Adsorption of Mercury(II), Lead(II), Cadmium(II) and Zinc(II) from Aqueous Solutions using Mercapto-Modified Silica Particles. Int. J. Appl. Ceram. Technol. 2013, 12, 461–472. [Google Scholar] [CrossRef]
- Akhter, F.; Jamali, A.R.; Pinjaro, M.A.; Shaikh, A.S.; Ibrahim, S.M.; del Mar Alguacil, M. An Extensive Comparative Study of Highly Enhanced Pb2+ Adsorption from Synthetic Wastewater by Organically Tailored Silica Aerogels. Water Air Soil Pollut. 2023, 234, 342. [Google Scholar] [CrossRef]
- Ifijen, I.H.; Itua, A.B.; Maliki, M.; Ize-Iyamu, C.O.; Omorogbe, S.O.; Aigbodion, A.I.; Ikhuoria, E.U. The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon 2020, 6, e04907. [Google Scholar] [CrossRef]
- Liu, Z.; Lei, M.; Zeng, W.; Li, Y.; Li, B.; Liu, D.; Liu, C. Synthesis of magnetic Fe3O4@SiO2-(-NH2/-COOH) nanoparticles and their application for the removal of heavy metals from wastewater. Ceram. Int. 2023, 49, 20470–20479. [Google Scholar] [CrossRef]
- Hao, S.; Zhong, Y.; Pepe, F.; Zhu, W. Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-functionalized mesoporous silicas. Chem. Eng. J. 2012, 189–190, 160–167. [Google Scholar] [CrossRef]
- Mirbagheri, R.; Elhamifar, D.; Shaker, M. Yolk-shell structured magnetic mesoporous silica: A novel and highly efficient adsorbent for removal of methylene blue. Sci. Rep. 2021, 11, 23259. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.F.; Wu, S.L.; Chang, B.S.; Sun, T. Zero-valent iron supported by dendritic mesoporous silica nanoparticles to purify dye wastewater. J. Environ. Chem. Eng. 2023, 11, 110434. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Hu, D.; Yang, R.; Zhang, J.; Guan, Y.; Lv, F.; Gao, H. A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int. J. Biol. Macromol. 2021, 187, 922–930. [Google Scholar] [CrossRef]
- Wieszczycka, K.; Filipowiak, K.; Dudzinska, P.; Nowicki, M.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Novel Mesoporous Organosilicas with Task Ionic Liquids: Properties and High Adsorption Performance for Pb(II). Molecules 2022, 27, 1405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Long, Y.; Hu, X.; Hu, J.; Zhu, M.; Zhou, S. A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. J. Solid State Chem. 2020, 289, 121491. [Google Scholar] [CrossRef]
- Wang, S.; Kwak, J.-H.; Islam, M.S.; Naeth, M.A.; Gamal El-Din, M.; Chang, S.X. Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Sci. Total Environ. 2020, 712, 136538. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Tang, X.; Qu, G.; Tang, H.; Wei, K.; Lv, J. Mesoporous Silica/Iron Phthalocyanine Light-Driven Nanomaterials for Efficient Removal of Pb2+ Ions from Wastewater. ACS Appl. Nano Mater. 2023, 6, 12816–12827. [Google Scholar] [CrossRef]
- Ghodsinia, S.S.E.; Eshghi, H.; Mohammadinezhad, A. Synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe composite and its elevated performance for Pb2+ removal in water. Sci. Rep. 2023, 13, 8092. [Google Scholar] [CrossRef]
- Thirupathi, K.; Santhamoorthy, M.; Suresh, R.; Wadaan, M.A.; Lin, M.-C.; Kim, S.-C.; Kumarasamy, K.; Phan, T.T.V. Synthesis of bis(2-aminoethyl)amine functionalized mesoporous silica (SBA-15) adsorbent for selective adsorption of Pb2+ ions from wastewater. Environ. Geochem. Health 2024, 46, 357. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, M. Evaluation of Cytotoxicity of Pb2+ Ion-Adsorbed Amino-Functionalized Magnetic Mesoporous Silica Nanoparticles: An In Vitro Study. Front. Mater. 2022, 9, 914009. [Google Scholar] [CrossRef]
- Liang, Y.; Han, Z.; Zeng, Q.; Wang, S.; Sun, W.; Zhong, H.; He, Z. Effective Removal of Pb2+ from Aqueous Solution Using Magnetic Mesoporous Silica Prepared by Rubidium-Containing Biotite Leaching Residues and Wastewater. Water 2022, 14, 2652. [Google Scholar] [CrossRef]
- Wang, W.; Wu, G.; Zhu, T.; Yang, Y.; Zhang, Y. Synthesis of -thiazole Schiff base modified SBA-15 mesoporous silica for selective Pb(II) adsorption. J. Taiwan Inst. Chem. Eng. 2021, 125, 349–359. [Google Scholar] [CrossRef]
- Xu, C.; Yu, Z.; Yuan, K.; Jin, X.; Shi, S.; Wang, X.; Zhu, L.; Zhang, G.; Xu, D.; Jiang, H. Improved preparation of electrospun MgO ceramic fibers with mesoporous structure and the adsorption properties for lead and cadmium. Ceram. Int. 2019, 45, 3743–3753. [Google Scholar] [CrossRef]
Adsorbents | Q(exp) (mg g−1) | Model | Parameters | R2 | |
---|---|---|---|---|---|
MONs-SH | 283.86 | First-order | Qe (mg g−1) 215.21 | k1 (min−1) 0.1195 | 0.871 |
Second-order | Qe (mg g−1) 285.71 | k2 (g mg−1 min−1) 0.00204 | 0.998 |
ΔH (KJ mol−1) | ΔS (J mol−1 K−1) | ΔG (KJ mol−1) | ||
---|---|---|---|---|
6.09 | 100.37 | 288 K | 298 K | 308 K |
−22.82 | −23.82 | −24.82 |
Values | Models | Parameters | R2 | |
---|---|---|---|---|
Q(exp) (mg g−1) | Langmuir | Qm (mg g−1) 309.11 | KL (L mmol−1) 509.36 | 0.993 |
297.12 | Freundlich | n 3.86 | KF 731.50 | 0.977 |
D-R model | Qm (mg g−1) 393.39 | KD (mol2 kJ−2) 0.0041 | 0.977 |
Adsorbents | Concentration | Time (min) | Capacity (mg g−1) | Ref. |
---|---|---|---|---|
Mesoporous silica-IP | 20 mg L−1 Pb2+ | 480 min | 52 mg g−1 | [44] |
DSS/MIL-88A-Fe | 100 mg L−1 Pb2+ | 110 min | 250 mg g−1 | [45] |
SBA-15@BDA NPs | 100 mg L−1 Pb2+ | 60 min | 112 mg g−1 | [46] |
Fe3O4@mSiO2-NH2 | 250 mg L−1 Pb2+ | 360 min | 123.46 mg g−1 | [47] |
FO/MS | 100 mg L−1 Pb2+ | 60 min | 143.47 mg g−1 | [48] |
MONs-SH | 0.04 mol L−1 Pb2+ | 60 min | 297.12 mg g−1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Gu, S.; Wang, R.; He, Y.; Dong, H.; Wang, X. Facile Synthesis of Functional Mesoporous Organosilica Nanospheres and Adsorption Properties Towards Pb(II) Ions. Nanomaterials 2025, 15, 136. https://doi.org/10.3390/nano15020136
Deng L, Gu S, Wang R, He Y, Dong H, Wang X. Facile Synthesis of Functional Mesoporous Organosilica Nanospheres and Adsorption Properties Towards Pb(II) Ions. Nanomaterials. 2025; 15(2):136. https://doi.org/10.3390/nano15020136
Chicago/Turabian StyleDeng, Liping, Shichun Gu, Ruyi Wang, Yapeng He, Hairong Dong, and Xue Wang. 2025. "Facile Synthesis of Functional Mesoporous Organosilica Nanospheres and Adsorption Properties Towards Pb(II) Ions" Nanomaterials 15, no. 2: 136. https://doi.org/10.3390/nano15020136
APA StyleDeng, L., Gu, S., Wang, R., He, Y., Dong, H., & Wang, X. (2025). Facile Synthesis of Functional Mesoporous Organosilica Nanospheres and Adsorption Properties Towards Pb(II) Ions. Nanomaterials, 15(2), 136. https://doi.org/10.3390/nano15020136