Controlled Oxidation of Metallic Molybdenum Patterns via Joule Heating for Localized MoS2 Growth
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Duong, D.L.; Yun, S.J.; Lee, Y.H. Van der Waals Layered Materials: Opportunities and Challenges. ACS Nano 2017, 11, 11803–11830. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xiao, Z.; Golgir, H.R.; Jiang, L.; Singh, V.R.; Keramatnejad, K.; Smith, K.E.; Hong, X.; Jiang, L.; Silvain, J.; et al. Large-Area 2D/3D MoS2–MoO2 Heterostructures with Thermally Stable Exciton and Intriguing Electrical Transport Behaviors. Adv. Electron. Mater. 2017, 3, 1600335. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Schock, R.T.; Neuwald, J.; Möckel, W.; Kronseder, M.; Pirker, L.; Remškar, M.; Hüttel, A.K. Non-Destructive Low-Temperature Contacts to MoS2 Nanoribbon and Nanotube Quantum Dots. Adv. Mater. 2023, 35, 2209333. [Google Scholar] [CrossRef]
- Ha, C.; Chung, Y. Thin Films as Practical Quantum Materials: A Status Quo and Beyond. APL Mater. 2024, 12, 120901. [Google Scholar] [CrossRef]
- Shi, Y.; Li, H.; Li, L.J. Recent Advances in Controlled Synthesis of Two-Dimensional Transition Metal Dichalcogenides via Vapour Deposition Techniques. Chem. Soc. Rev. 2015, 44, 2744–2756. [Google Scholar] [CrossRef]
- Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition. Adv. Opt. Mater. 2014, 2, 131–136. [Google Scholar] [CrossRef]
- Lee, Y.; Zhang, X.; Zhang, W.; Chang, M.; Lin, C.; Chang, K.; Yu, Y.; Wang, J.T.; Chang, C.; Li, L.; et al. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Huang, X.; Liu, L.-Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D.-D.; Li, J.-J.; Gu, C.-Z.; Meng, X.-M. CVD Synthesis of Large-Area, Highly Crystalline MoSe2 Atomic Layers on Diverse Substrates and Application to Photodetectors. Nanoscale 2014, 6, 8949–8955. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano 2014, 8, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wang, H.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341–1347. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J. Wafer-Scale MoS2 Thin Layers Prepared by MoO3 Sulfurization. Nanoscale 2012, 4, 6637–6641. [Google Scholar] [CrossRef]
- Song, J.-G.; Park, J.; Lee, W.; Choi, T.; Jung, H.; Lee, C.W.; Hwang, S.-H.; Myoung, J.M.; Jung, J.-H.; Kim, S.-H.; et al. Layer-Controlled, Wafer-Scale, and Conformal Synthesis of Tungsten Disulfide Nanosheets Using Atomic Layer Deposition. ACS Nano 2013, 7, 11333–11340. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Wu, Y.; Jiao, L. Controlled Synthesis of Highly Crystalline MoS2 Flakes by Chemical Vapor Deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307. [Google Scholar] [CrossRef]
- Long, M.; Liu, F.; Ding, F.; Wang, Y.; Ye, J.; Xie, R.; Wang, H.; Xu, M.; Wang, F.; Tu, Y.; et al. Scalable Fabrication of Long-Wave Infrared PtSe2-G Heterostructure Array Photodetectors. Appl. Phys. Lett. 2020, 117, 231104. [Google Scholar] [CrossRef]
- Khadka, S.; Lindquist, M.; Aleithan, S.H.; Blumer, A.N.; Wickramasinghe, T.E.; Kordesch, M.E.; Stinaff, E. Monolayers: Concurrent Growth and Formation of Electrically Contacted Monolayer Transition Metal Dichalcogenides on Bulk Metallic Patterns. Adv. Mater. Interfaces 2017, 4, 1600599. [Google Scholar] [CrossRef]
- Khadka, S.; Wickramasinghe, T.E.; Lindquist, M.; Thorat, R.; Aleithan, S.H.; Kordesch, M.E.; Stinaff, E. As-Grown Two-Dimensional MoS2-Based Photodetectors with Naturally Formed Contacts. Appl. Phys. Lett. 2017, 110, 261109. [Google Scholar] [CrossRef]
- Aleithan, S.H.; Wickramasinghe, T.E.; Lindquist, M.; Khadka, S.; Stinaff, E. Growth of Complex 2D Material-Based Structures with Naturally Formed Contacts. ACS Omega 2019, 4, 9557–9562. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, T.E.; Jensen, G.; Thorat, R.; Lindquist, M.; Aleithan, S.H.; Stinaff, E. Complementary Growth of 2D Transition Metal Dichalcogenide Semiconductors on Metal Oxide Interfaces. Appl. Phys. Lett. 2020, 117, 213104. [Google Scholar] [CrossRef]
- Bizhani, M.; Jensen, G.; Poston, W.; Aldosari, N.; Tariq, M.; Aleithan, S.; Stinaff, E. Selective Oxidation of Metallic Contacts for Localized Chemical Vapor Deposition Growth of 2D-Transition Metal Dichalcogenides. Mater. Res. Express 2024, 11, 015901. [Google Scholar] [CrossRef]
- Mallet, A.; Cebriano, T.; Méndez, B.; Piqueras, J. Rapid Synthesis of Undoped and Er-Doped MoO3 Layered Plates by Resistive Heating of Molybdenum: Structural and Optical Properties. Phys. Status Solidi A 2018, 215, 1800471. [Google Scholar] [CrossRef]
- Li, J.; Luo, L.; Wang, S.; Song, H.; Jiang, B. Recent Advances in Joule-Heating Synthesis of Functional Nanomaterials for Photo and Electrocatalysis. PhotoMat 2024, 1–37. [Google Scholar] [CrossRef]
- Sudarmozhi, K.; Iranian, D.; Alqahtani, S.; Khan, I.; Niazai, S. Viscoelasticity of Maxwell Fluid in a Permeable Porous Channel. Discov. Mech. Eng. 2024, 3, 27. [Google Scholar] [CrossRef]
- Baral, S.; Johnson, S.C.; Alaulamie, A.A.; Richardson, H.H. Nanothermometry Using Optically Trapped Erbium Oxide Nanoparticle. Appl. Phys. 2016, 122, 340. [Google Scholar] [CrossRef]
- Alaulamie, A.A.; Baral, S.; Johnson, S.C.; Richardson, H.H. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs. Small 2017, 13, 1601989. [Google Scholar] [CrossRef]
- Li, T.; Jiang, W.; Wu, Y.; Zhou, L.; Ye, H.; Geng, Y.; Hu, M.; Liu, K.; Wang, R.; Sun, Y. Controlled Fabrication of Metallic MoO2 Nanosheets Towards High-Performance p-Type 2D Transistors. Small 2024, 20, 2403118. [Google Scholar] [CrossRef]
- Concepción, O.; de Melo, O. The Versatile Family of Molybdenum Oxides: Synthesis, Properties, and Recent Applications. J. Phys. Condens. Matter 2023, 35, 143002. [Google Scholar] [CrossRef]
- Xu, T.; Zeng, X.; Hu, S.; Wang, W.; Bao, X.; Peng, Y.; Deng, H.; Gan, Z.; Wen, Z.; Zhang, W.; et al. Rapid and Large-Scale Synthesis of MoS2 via Ultraviolet Laser-Assisted Technology for Photodetector Applications. Nanotechnology 2024, 35, 325601. [Google Scholar] [CrossRef] [PubMed]
- Pachlhofer, J.M.; Jachs, C.; Franz, R.; Franzke, E.; Köstenbauer, H.; Winkler, J.; Mitterer, C. Structure Evolution in Reactively Sputtered Molybdenum Oxide Thin Films. Vacuum 2016, 131, 246–251. [Google Scholar] [CrossRef]
- Domínguez, A.; Dutt, A.; de Melo, O.; Huerta, L.; Santana, G. Molybdenum Oxide 2-D Flakes: Role of Thickness and Annealing Treatment on the Optoelectronic Properties of the Material. J. Mater. Sci. 2018, 53, 6147–6156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldosari, N.; Poston, W.; Jensen, G.; Bizhani, M.; Tariq, M.; Stinaff, E. Controlled Oxidation of Metallic Molybdenum Patterns via Joule Heating for Localized MoS2 Growth. Nanomaterials 2025, 15, 131. https://doi.org/10.3390/nano15020131
Aldosari N, Poston W, Jensen G, Bizhani M, Tariq M, Stinaff E. Controlled Oxidation of Metallic Molybdenum Patterns via Joule Heating for Localized MoS2 Growth. Nanomaterials. 2025; 15(2):131. https://doi.org/10.3390/nano15020131
Chicago/Turabian StyleAldosari, Norah, William Poston, Gregory Jensen, Maryam Bizhani, Muhammad Tariq, and Eric Stinaff. 2025. "Controlled Oxidation of Metallic Molybdenum Patterns via Joule Heating for Localized MoS2 Growth" Nanomaterials 15, no. 2: 131. https://doi.org/10.3390/nano15020131
APA StyleAldosari, N., Poston, W., Jensen, G., Bizhani, M., Tariq, M., & Stinaff, E. (2025). Controlled Oxidation of Metallic Molybdenum Patterns via Joule Heating for Localized MoS2 Growth. Nanomaterials, 15(2), 131. https://doi.org/10.3390/nano15020131