Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater
Abstract
1. Introduction
2. Experimental Section
2.1. Main Experimental Raw Materials, Reagents, and Equipment
2.2. Experimental Methods
2.3. Analytical and Characterization Methods
3. Results and Discussions
3.1. Preparation of Biochar Materials
3.2. Degradation of Brewing Wastewater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ravikumar, Y.; Razack, S.A.; Yun, J.; Zhang, G.; Zabed, H.M.; Qi, X. Recent advances in Microalgae-based distillery wastewater treatment. Environ. Technol. Innov. 2021, 24, 101839. [Google Scholar] [CrossRef]
- Nikhar, C.K.; Vyas, G.S.; Dalvi, R.S.; Bhoye, D.Y. A critical review on applications of machine learning in wastewater treatment: Insights and implications for distillery wastewater. Water Qual. Res. J. 2025, 60, 1–18. [Google Scholar] [CrossRef]
- Rai, U.K.; Muthukrishnan, M.; Guha, B.K. Tertiary treatment of distillery wastewater by nanofiltration. Desalination 2008, 230, 70–78. [Google Scholar] [CrossRef]
- Abhinesh, K.P.; Parmesh, K.C. Physicochemical Treatment of Distillery Wastewater-A Review. Chem. Eng. Commun. 2015, 202, 1098–1117. [Google Scholar]
- Inigo, J.; Chandraraj, K.; Mathava, K. A sequential electrochemical oxidation—Algal photobioreactor system for the treatment of distillery wastewater. J. Environ. Chem. Eng. 2023, 11, 110208. [Google Scholar]
- Singh, N.; Basu, S.; Balakrishnan, M. Comprehensive treatment scheme for distillery wastewater targeting recovery of water, antioxidant compounds and biogas. J. Water Process Eng. 2020, 38, 101663. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Ozone pre-treatment of molasses-based biomethanated distillery wastewater for enhanced bio-composting. J. Environ. Manag. 2019, 246, 42–50. [Google Scholar] [CrossRef]
- Jayesh, M.S.; Enrico, M.; Prakash, C.G. Treatment of domestic and distillery wastewater in high surface microbial fuel cells. Int. J. Hydrogen Energy 2024, 39, 21819–21827. [Google Scholar]
- Long, Y.; Feng, Y.; Li, X.; Suo, N.; Chen, H.; Wang, Z.; Yu, Y. Removal of diclofenac by three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS). Chemosphere 2019, 219, 1024–1031. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiu, S.; Deng, F.; Ma, F.; Li, G.; Zheng, Y. Three-dimensional nickel foam electrode for efficient electro-Fenton in a novel reactor. Environ. Technol. 2020, 41, 730–740. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Wu, P.; Duan, Y.; Zhou, L.; Lai, Y.; Wang, F.; Li, S. Three-dimensional heterogeneous Electro-Fenton system with a novel catalytic particle electrode for Bisphenol A removal. J. Hazard. Mater. 2020, 393, 120448. [Google Scholar] [CrossRef]
- Zahra, A.; Zohreh, A.J.; Abbas, R. Three-dimensional electro-Fenton system supplied with a nanocomposite of microbial cellulose/Fe3O4 for effective degradation of tetracycline. Chemosphere 2023, 317, 137890. [Google Scholar]
- Zheng, Y.; Qiu, S.; Deng, F.; Zhu, Y.; Li, G.; Ma, F. Three-dimensional electro-Fenton system with iron foam as particle electrode for folic acid wastewater pretreatment. Sep. Purif. Technol. 2019, 224, 463–474. [Google Scholar] [CrossRef]
- Chen, J.-J.; Wang, L.-Y.; Chen, Y.; Yao, W.-Y. Process Optimization of Three-Dimensional Electro-Fenton System for Treatment of Wastewater Produced in Acrylamide Manufacturing Industry. Int. J. Electrochem. Sci. 2022, 17, 220675. [Google Scholar] [CrossRef]
- Mohmmad, A.; Hamed, M.M.T.; Haddad, K.M.H. Electro-Fenton technology for dairy wastewater treatment. Int. J. Environ. Sci Technol. 2024, 21, 35–42. [Google Scholar] [CrossRef]
- Wang, C.-T.; Hu, J.-L.; Chou, W.-L.; Kuo, Y.-M. Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J. Hazard. Mater. 2008, 152, 601–606. [Google Scholar] [CrossRef]
- Mengelizadeh, N.; Sadeghi, M.; Mohammadi, H.; Mehdinejad, M.H.; Neamati, B.; Pourzamani, H.; Jalil, M. Three dimensional electro-Fenton oxidation of diclofenac and naproxen with magnetic bentonite as a novel particle electrode. Int. J. Environ. Anal. Chem. 2022, 102, 5045–5063. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, S.; Tang, Y.; Zhou, Y.; Xiao, L. Enhancement of excess sludge dewatering by three-dimensional electro-Fenton process based on sludge biochar. J. Hazard. Mater. 2023, 445, 130438. [Google Scholar] [CrossRef]
- HJ 828-2017; Water quality-Determination of the chemical oxygen demand-Dichromate method. China Environmental Science Press: Beijing, China, 2017.
- Fancello, D.; Scalco, J.; Medas, D.; Rodeghero, E.; Martucci, A.; Meneghini, C.; De Giudici, G. XRD-Thermal Combined Analyses: An Approach to Evaluate the Potential of Phytoremediation, Phytomining, and Biochar Production. Int. J. Environ. Res. Public Health 2019, 16, 1976. [Google Scholar] [CrossRef]
- Wang, J.; Tan, Y.; Yang, H.; Zhan, L.; Sun, G.; Luo, L. On the adsorption characteristics and mechanism of methylene blue by ball mill modified biochar. Sci. Rep. 2023, 13, 21174. [Google Scholar] [CrossRef]
- Todaka, Y.; McCormick, P.G.; Tsuchiya, K.; Umemoto, M. Synthesis of Fe-Cu Nanoparticles by Mechanochemical Processing Using a Ball Mill. Mater. Trans. 2002, 43, 667–673. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Wu, M.; Chen, W. Preparation of biochar derived from waste cotton woven by low-dosage Fe(NO3)3 activation: Characterization, pore development, and adsorption. Environ. Sci. Pollut. Res. 2023, 30, 49523–49535. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, S.; Cho, D.W.; Du, Q.; Song, J.; Tsang, D.C. Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal. Bioresour. Technol. 2019, 272, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wen, J.; Yang, L.; Cui, H.; Zeng, T.; Huang, J. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar. Environ. Sci. Pollut. Res. 2023, 30, 39154–39168. [Google Scholar] [CrossRef]
- Grissa, R.; Abramova, A.; Tambio, S.J.; Lecuyer, M.; Deschamps, M.; Fernandez, V.; Greneche, J.M.; Guyomard, D.; Lestriez, B.; Moreau, P. Thermomechanical Polymer Binder Reactivity with Positive Active Materials for Li Metal Polymer and Li-Ion Batteries: An XPS and XPS Imaging Study. ACS Appl. Mater. Interfaces 2019, 11, 18368–18376. [Google Scholar] [CrossRef]
- Guo, R.; Yu, Z.; Yang, Y.; Sun, K.; Wu, C.; Liu, H.; Jiang, X.; Lan, Z.; Li, L. Effects of Iron Deficiency Content on Electromagnetic Performance of LiZn Ferrites. J. Supercond. Nov. Magn. 2017, 30, 1767–1773. [Google Scholar] [CrossRef]
- Suzuki, C.; Nakajima, K.; Osaka, M. Phase stability of Cs-Si-O and Cs-Si-Fe-O compounds on stainless steel. J. Nucl. Sci. Technol. 2022, 59, 345–356. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Li, X.D.; Wang, J.; Li, W.F. Preparation of continuous Si-Fe-C-O functional ceramic fibers. Trans. Nonferrous Met. Soc. China 2007, 17, 987–991. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, P.; Wang, C.; Tang, J.; Sun, H. Enhancement of persulfate activation by Fe-biochar composites: Synergism of Fe and N-doped biochar. Appl. Catal. B Environ. 2022, 303, 120926. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Tian, Q.; Wang, Q.; Song, Y. A two-step mechanism in nucleation of solid silica from Fe-O-Si melt. J. Theor. Comput. Chem. 2018, 17, 1850026. [Google Scholar] [CrossRef]
- Boccato, S.; Torchio, R.; Anzellini, S.; Boulard, E.; Guyot, F.; Irifune, T.; Harmand, M.; Kantor, I.; Miozzi, F.; Parisiades, P.; et al. Melting properties by X-ray absorption spectroscopy: Common signatures in binary Fe–C, Fe–O, Fe–S and Fe–Si systems. Sci. Rep. 2020, 10, 11663. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Ling, P.; Zhang, X.; Xu, K.; He, L.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 2022, 202, 117644. [Google Scholar] [CrossRef]
- Chen, Y.; Syed-Hassan, S.S.A.; Xiong, Z.; Li, Q.; Hu, X.; Xu, J.; Ren, Q.; Deng, Z.; Wang, X.; Su, S.; et al. Temporal and spatial evolution of biochar chemical structure during biomass pellet pyrolysis from the insights of micro-Raman spectroscopy. Fuel Process. Technol. 2021, 218, 106839. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Quach An Binh, Q.A.B.; Kajitvichyanukul, P. Adsorption mechanism of dichlorvos onto coconut fibre biochar: The significant dependence of H-bonding and the pore-filling mechanism. Water Sci. Technol. 2019, 79, 866–876. [Google Scholar] [CrossRef]
- Jing, X.T.; Anurita, S.; Senthil, K.A. Prediction of carbon sequestration of biochar produced from biomass pyrolysis by artificial neural network. J. Environ. Chem. Eng. 2022, 10, 107640. [Google Scholar] [CrossRef]
Factor | Coded Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
A. Particle electrode dosage (g/L) | 9 | 12 | 15 |
B. Current density (mA/cm2) | 12 | 16 | 20 |
C. pH | 3 | 4 | 5 |
Experiment No. | A | B | C | COD Degradation Rate (%) |
---|---|---|---|---|
1 | −1 | −1 | 0 | 58.27 |
2 | 1 | −1 | 0 | 66.36 |
3 | −1 | 1 | 0 | 62.38 |
4 | 1 | 1 | 0 | 68.23 |
5 | −1 | 0 | −1 | 61.16 |
6 | 1 | 0 | −1 | 68.33 |
7 | −1 | 0 | 1 | 67.26 |
8 | 1 | 0 | 1 | 68.32 |
9 | 0 | −1 | −1 | 65.23 |
10 | 0 | 1 | −1 | 68.33 |
11 | 0 | −1 | 1 | 67.26 |
12 | 0 | 1 | 1 | 69.54 |
13 | 0 | 0 | 0 | 70.84 |
14 | 0 | 0 | 0 | 71.59 |
15 | 0 | 0 | 0 | 70.33 |
16 | 0 | 0 | 0 | 71.43 |
17 | 0 | 0 | 0 | 70.4 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|
Model | 217.90 | 9 | 24.21 | 26.20 | 0.0001 | significant |
A | 61.44 | 1 | 61.44 | 66.47 | <0.0001 | |
B | 16.13 | 1 | 16.13 | 17.45 | 0.0041 | |
C | 10.88 | 1 | 10.88 | 11.77 | 0.0110 | |
AB | 1.25 | 1 | 1.25 | 1.36 | 0.2822 | |
AC | 9.33 | 1 | 9.33 | 10.10 | 0.0155 | |
BC | 0.17 | 1 | 0.17 | 0.18 | 0.6826 | |
A2 | 74.81 | 1 | 74.81 | 80.95 | <0.0001 | |
B2 | 35.23 | 1 | 35.23 | 38.12 | 0.0005 | |
C2 | 0.80 | 1 | 0.80 | 0.86 | 0.3838 | |
Residual | 6.47 | 7 | 0.92 | |||
Lack of Fit | 5.14 | 3 | 1.71 | 5.13 | 0.0740 | not significant |
Pure Error | 1.33 | 4 | 0.33 | |||
Cor Total | 224.37 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Liu, W.; Shi, T.; Shi, W.; Wu, F.; Xie, Y. Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater. Nanomaterials 2025, 15, 1530. https://doi.org/10.3390/nano15191530
Guo J, Liu W, Shi T, Shi W, Wu F, Xie Y. Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater. Nanomaterials. 2025; 15(19):1530. https://doi.org/10.3390/nano15191530
Chicago/Turabian StyleGuo, Ju, Wei Liu, Tianzhu Shi, Wei Shi, Fuyong Wu, and Yi Xie. 2025. "Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater" Nanomaterials 15, no. 19: 1530. https://doi.org/10.3390/nano15191530
APA StyleGuo, J., Liu, W., Shi, T., Shi, W., Wu, F., & Xie, Y. (2025). Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater. Nanomaterials, 15(19), 1530. https://doi.org/10.3390/nano15191530