Integration of Er3+ Emitters in Silicon-on-Insulator Nanodisk Metasurface
Abstract
1. Introduction
2. Materials and Methods
2.1. Er3+ Implantation
2.2. Dielectric Metasurface Fabrication
2.3. Metasurfaces Annealing
2.4. Photoluminescence Spectroscopy
2.5. Confocal Imaging
2.6. Time-Resolved Photoluminescence Measurements
2.7. Polarization Measurements
2.8. Photoluminescence Excitation and Time Resolved in Resonance Excitation
2.9. Collection Efficiency Modeling
3. Results and Discussions
3.1. Photoluminescence Modification
3.2. Time-Resolved Photoluminescence
3.3. Metasurface Absorption and Emission Dipole Polarization
3.4. Room Temperature Photoluminescence Excitation and Resonant Time-Resolved Emission
3.5. Metasurface Fluorescence Enhancement Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miniscalco, W.J. Erbium-doped glasses for fiber amplifiers at 1500 nm. J. Light. Technol. 1991, 9, 234–250. [Google Scholar] [CrossRef]
- Digonnet, M.J. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kenyon, A. Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum Electron. 2002, 26, 225–284. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, X.; Wu, J.; Zhu, B.; Chen, Y.; Chen, X. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron. 2021, 64, 234262. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, Z.; Ji, X.; Lukashchuk, A.; He, J.; Riemensberger, J.; Hafermann, M.; Wang, R.N.; Liu, J.; Ronning, C.; et al. A photonic integrated circuit-based erbium-doped amplifier. Science 2022, 376, 1309–1313. [Google Scholar] [CrossRef]
- Stevenson, P.; Phenicie, C.M.; Gray, I.; Horvath, S.P.; Welinski, S.; Ferrenti, A.M.; Ferrier, A.; Goldner, P.; Das, S.; Ramesh, R.; et al. Erbium-implanted materials for quantum communication applications. Phys. Rev. B 2022, 105, 224106. [Google Scholar] [CrossRef]
- Becher, C.; Gao, W.; Kar, S.; Marciniak, C.D.; Monz, T.; Bartholomew, J.G.; Goldner, P.; Loh, H.; Marcellina, E.; Goh, K.E.J.; et al. 2023 roadmap for materials for quantum technologies. Mater. Quantum Technol. 2023, 3, 012501. [Google Scholar] [CrossRef]
- Yin, C.; Rancic, M.; De Boo, G.G.; Stavrias, N.; McCallum, J.C.; Sellars, M.J.; Rogge, S. Optical addressing of an individual erbium ion in silicon. Nature 2013, 497, 91–94. [Google Scholar] [CrossRef]
- Chen, S.; Raha, M.; Phenicie, C.M.; Ourari, S.; Thompson, J.D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 2020, 370, 592–595. [Google Scholar] [CrossRef]
- Ahlefeldt, R.L.; Hush, M.R.; Sellars, M.J. Ultranarrow Optical Inhomogeneous Linewidth in a Stoichiometric Rare-Earth Crystal. Phys. Rev. Lett. 2016, 117, 250504. [Google Scholar] [CrossRef] [PubMed]
- Böttger, T.; Thiel, C.W.; Sun, Y.; Cone, R.L. Optical decoherence and spectral diffusion at 1.5 μm in Er3+: Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B 2006, 73, 075101. [Google Scholar] [CrossRef]
- Rakonjac, J.V.; Chen, Y.H.; Horvath, S.P.; Longdell, J.J. Long spin coherence times in the ground state and in an optically excited state of Er3+ 167: Y2SiO5 at zero magnetic field. Phys. Rev. B 2020, 101, 184430. [Google Scholar] [CrossRef]
- Gupta, S.; Wu, X.; Zhang, H.; Yang, J.; Zhong, T. Robust millisecond coherence times of erbium electron spins. Phys. Rev. Appl. 2023, 19, 044029. [Google Scholar] [CrossRef]
- Berkman, I.R.; Lyasota, A.; de Boo, G.G.; Bartholomew, J.G.; Lim, S.Q.; Johnson, B.C.; McCallum, J.C.; Xu, B.B.; Xie, S.; Abrosimov, N.V.; et al. Long optical and electron spin coherence times for erbium ions in silicon. Npj Quantum Inf. 2025, 11, 66. [Google Scholar] [CrossRef]
- Gritsch, A.; Weiss, L.; Fruh, J.; Rinner, S.; Reiserer, A. Narrow optical transitions in erbium-implanted silicon waveguides. Phys. Rev. X 2022, 12, 041009. [Google Scholar] [CrossRef]
- Gritsch, A.; Ulanowski, A.; Reiserer, A. Purcell enhancement of single-photon emitters in silicon. Optica 2023, 10, 783–789. [Google Scholar] [CrossRef]
- Bhaskar, M.; Riedinger, R.; Machielse, B.; Levonian, D.; Nguyen, C.; Knall, E.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D.; et al. Experimental demonstration of memory-enhanced quantum communication. Nature 2020, 580, 60–64. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Evlyukhin, A.B. Mie-resonant metaphotonics. Adv. Opt. Photonics 2024, 16, 539–658. [Google Scholar] [CrossRef]
- Vaskin, A.; Mashhadi, S.; Steinert, M.; Chong, K.E.; Keene, D.; Nanz, S.; Abass, A.; Rusak, E.; Choi, D.Y.; Fernandez-Corbaton, I.; et al. Manipulation of Magnetic Dipole Emission from Eu3+ with Mie-Resonant Dielectric Metasurfaces. Nano Lett. 2019, 19, 1015–1022. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ishii, T.; Uchida, K.; Zushi, T.; Coe, L.; Sato, S.I.; Prati, E.; Shinada, T.; Tanii, T. Enhancing Room-temperature Photoluminescence from Erbium-doped Silicon by Fabricating Nanopillars in a Silicon-on-Insulator Layer. e-J. Surf. Sci. Nanotechnol. 2023, 21, 262–266. [Google Scholar] [CrossRef]
- Yaroshenko, V.; Obramenko, M.; Dyatlovich, A.; Kustov, P.; Gudovskikh, A.; Goltaev, A.; Mukhin, I.; Ageev, E.; Zuev, D. Active Erbium-Doped Silicon Nanoantenna. Laser Photonics Rev. 2023, 17, 2200661. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.; Biersack, J. SRIM-The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar]
- Ahamad, M.A.; Ahmed, N.; Castelletto, S.; Inam, F.A. Silicon Carbide Pillar Lattice for Controlling the Spontaneous Emission of Embedded Color Centers. J. Light. Technol. 2024, 42, 689–695. [Google Scholar] [CrossRef]
- Ahamad, M.A.; Castelletto, S.; Inam, F.A. Controlling the spontaneous emission of the telecom O-band centers in Silicon-on-Insulator with coherent dipole-quadrupole interactions on a silicon pillar lattice. J. Lumin. 2025, 277, 120881. [Google Scholar] [CrossRef]
- Rinner, S.; Burger, F.; Gritsch, A.; Schmitt, J.; Reiserer, A. Erbium emitters in commercially fabricated nanophotonic silicon waveguides. Nanophotonics 2023, 12, 3455–3462. [Google Scholar] [CrossRef]
- Binder, J.M.; Stark, A.; Tomek, N.; Scheuer, J.; Frank, F.; Jahnke, K.D.; Mu¨ller, C.; Schmitt, S.; Metsch, T.; Unden, T.; et al. Qudi: A modular python suite for experiment control and data processing. arXiv arXiv:1611.09146. [CrossRef]
- Xu, Y.; Vučković, J.; Lee, R.; Painter, O.; Scherer, A.; Yariv, A. Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity. JOSA B 1999, 16, 465–474. [Google Scholar]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Shaffer, P.T. Refractive index, dispersion, and birefringence of silicon carbide polytypes. Appl. Opt. 1971, 10, 1034–1036. [Google Scholar] [CrossRef]
- Green, M.A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
- Vaskin, A.; Kolkowski, R.; Koenderink, A.F.; Staude, I. Light-emitting metasurfaces. Nanophotonics 2019, 8, 1151–1198. [Google Scholar] [CrossRef]
- Benton, J.; Michel, J.; Kimerling, L.; Jacobson, D.; Xie, Y.H.; Eaglesham, D.; Fitzgerald, E.; Poate, J. The electrical and defect properties of erbium-implanted silicon. J. Appl. Phys. 1991, 70, 2667–2671. [Google Scholar] [CrossRef]
- Coffa, S.; Priolo, F.; Franzo, G.; Bellani, V.; Carnera, A.; Spinella, C. Optical activation and excitation mechanisms of Er implanted in Si. Phys. Rev. B 1993, 48, 11782. [Google Scholar] [CrossRef]
- Lourenço, M.; Milošević, M.; Gorin, A.; Gwilliam, R.; Homewood, K. Super-enhancement of 1.54 μm emission from erbium codoped with oxygen in silicon-on-insulator. Sci. Rep. 2016, 6, 37501. [Google Scholar] [CrossRef]
- Miritello, M.; Lo Savio, R.; Piro, A.; Franzò, G.; Priolo, F.; Iacona, F.; Bongiorno, C. Optical and structural properties of Er2O3 films grown by magnetron sputtering. J. Appl. Phys. 2006, 100, 013502. [Google Scholar] [CrossRef]
- Li, J.; Lin, Q.; Sun, Z. Photoluminescence of Er silicates on microstructured Si substrate. J. Lumin. 2012, 132, 325–329. [Google Scholar] [CrossRef]
- Hong, J.; Wen, H.; He, J.; Liu, J.; Dan, Y.; Tomm, J.W.; Yue, F.; Chu, J.; Duan, C. Stimulated emission at 1.54 μm from erbium/oxygen-doped silicon-based light-emitting diodes. Photonics Res. 2021, 9, 714–721. [Google Scholar] [CrossRef]
- Larin, A.O.; Dvoretckaia, L.N.; Mozharov, A.M.; Mukhin, I.S.; Cherepakhin, A.B.; Shishkin, I.I.; Ageev, E.I.; Zuev, D.A. Luminescent erbium-doped silicon thin films for advanced anti-counterfeit labels. Adv. Mater. 2021, 33, 2005886. [Google Scholar] [CrossRef]
- Campione, S.; Liu, S.; Basilio, L.I.; Warne, L.K.; Langston, W.L.; Luk, T.S.; Wendt, J.R.; Reno, J.L.; Keeler, G.A.; Brener, I.; et al. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces. ACS Photonics 2016, 3, 2362–2367. [Google Scholar] [CrossRef]
- Cui, C.; Zhou, C.; Yuan, S.; Qiu, X.; Zhu, L.; Wang, Y.; Li, Y.; Song, J.; Huang, Q.; Wang, Y.; et al. Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission. ACS Photonics 2018, 5, 4074–4080. [Google Scholar] [CrossRef]
- Vuillermet, E.; Bercu, N.; Kochtcheev, S.; Lazar, M. Integration of bright color centers into arrays of silicon carbide nanopillars. Appl. Phys. Lett. 2025, 127, 024003. [Google Scholar] [CrossRef]
- Bezares, F.J.; Long, J.P.; Glembocki, O.J.; Guo, J.; Rendell, R.W.; Kasica, R.; Shirey, L.; Owrutsky, J.C.; Caldwell, J.D. Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays. Opt. Express 2013, 21, 27587–27601. [Google Scholar] [CrossRef]
- Liu, S.; Vaskin, A.; Addamane, S.; Leung, B.; Tsai, M.C.; Yang, Y.; Vabishchevich, P.P.; Keeler, G.A.; Wang, G.; He, X.; et al. Light-emitting metasurfaces: Simultaneous control of spontaneous emission and far-field radiation. Nano Lett. 2018, 18, 6906–6914. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, Z.H.; Yan, F.F.; Li, Q.; Yang, X.G.; Guo, L.; Zhou, X.; Huang, W.; Xu, J.S.; Li, C.F.; et al. Experimental optical properties of single nitrogen vacancy centers in silicon carbide at room temperature. ACS Photonics 2020, 7, 1611–1616. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M.H. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840. [Google Scholar] [CrossRef]
- Priolo, F.; Franzò, G.; Coffa, S.; Carnera, A. Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si. Phys. Rev. B 1998, 57, 4443–4455. [Google Scholar] [CrossRef]
- Sandholzer, K.; Rinner, S.; Edelmann, J.; Reiserer, A. Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides. Nanophotonics 2025, 14, 2005–2014. [Google Scholar] [CrossRef]
- Tavani, G.; Barri, C.; Mafakheri, E.; Franzò, G.; Celebrano, M.; Castriotta, M.; Di Giancamillo, M.; Ferrari, G.; Picciariello, F.; Foletto, G.; et al. Fully Integrated Silicon Photonic Erbium-Doped Nanodiode for Few Photon Emission at Telecom Wavelengths. Materials 2023, 16, 2344. [Google Scholar] [CrossRef]
- Bader, J.; Lim, S.Q.; Inam, F.A.; Lyasota, A.; Johnson, B.C.; Peruzzo, A.; McCallum, J.C.; Li, Q.; Rogge, S.; Castelletto, S. Photoluminescence Properties of Ion-Implanted Er3+ Defects in 4H-SiCOI for Integrated Quantum Photonics. ACS Appl. Nano Mater. 2025, 8, 7920–7927. [Google Scholar] [CrossRef]
- Kalinic, B.; Cesca, T.; Balasa, I.G.; Trevisani, M.; Jacassi, A.; Maier, S.A.; Sapienza, R.; Mattei, G. Quasi-BIC Modes in All-Dielectric Slotted Nanoantennas for Enhanced Er3+ Emission. ACS Photonics 2023, 10, 534–543. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bader, J.; Arianfard, H.; Ciavolino, V.; Ahamad, M.A.; Inam, F.A.; Sato, S.-i.; Castelletto, S. Integration of Er3+ Emitters in Silicon-on-Insulator Nanodisk Metasurface. Nanomaterials 2025, 15, 1499. https://doi.org/10.3390/nano15191499
Bader J, Arianfard H, Ciavolino V, Ahamad MA, Inam FA, Sato S-i, Castelletto S. Integration of Er3+ Emitters in Silicon-on-Insulator Nanodisk Metasurface. Nanomaterials. 2025; 15(19):1499. https://doi.org/10.3390/nano15191499
Chicago/Turabian StyleBader, Joshua, Hamed Arianfard, Vincenzo Ciavolino, Mohammed Ashahar Ahamad, Faraz A. Inam, Shin-ichiro Sato, and Stefania Castelletto. 2025. "Integration of Er3+ Emitters in Silicon-on-Insulator Nanodisk Metasurface" Nanomaterials 15, no. 19: 1499. https://doi.org/10.3390/nano15191499
APA StyleBader, J., Arianfard, H., Ciavolino, V., Ahamad, M. A., Inam, F. A., Sato, S.-i., & Castelletto, S. (2025). Integration of Er3+ Emitters in Silicon-on-Insulator Nanodisk Metasurface. Nanomaterials, 15(19), 1499. https://doi.org/10.3390/nano15191499