Fabrication of Low-Temperature ppb-Level Ethanol Gas Sensor Based on Hierarchical NiO-SnO2 Nanoflowers Under Hydrothermal Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Hierarchical NiO-SnO2 Nanoflowers
2.2. Characterizations
2.3. Fabrication and Measurement of Gas Sensor
3. Results and Discussion
4. Gas Sensing Characteristics
5. Gas Sensing Mechanism
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Zheng, J.; Wang, S.; Li, X.; Wang, H.; Song, Y.-Y.; Song, P.; Gao, Z.; Zhao, C. Accelerating Carrier Transfer in Dual p–n Heterojunctions by Mo–N Coupling to Gain an Ultrahigh-Sensitive NO2 Sensing at Room Temperature for Asthma Diagnosis. ACS Sens. 2025, 10, 3681–3691. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, Z.; He, X.; Liu, K.; Debliquy, M.; Zhou, Y.; Zhang, C. Electronic nose based on metal oxide semiconductor sensors for medical diagnosis. Prog. Nat. Sci. Mater. Int. 2024, 34, 74–88. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C. MOX-based resistive gas sensors with different types of sensitive materials (powders, pellets, films), used in environmental chemistry. Chemosensors 2023, 11, 95. [Google Scholar] [CrossRef]
- Fahad, H.M.; Shiraki, H.; Amani, M.; Zhang, C.; Hebbar, V.S.; Gao, W.; Ota, H.; Hettick, M.; Kiriya, D.; Chen, Y.-Z. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Sci. Adv. 2017, 3, e1602557. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Cao, S.; Wang, H.; Tang, Y.; Liu, L.; Xue, E.; Le, Z.; Feng, X.; Wang, C.; Sun, L.; et al. Autonomous and Ultrasensitive Low-Power Metal Oxide Nanofiber Gas Sensor for Source Tracking and Localization. ACS Sens. 2025, 10, 2938–2947. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Chan, C.L.J.; Wan, Z.A.; Ye, W.; Tang, W.; Ma, Z.; Ren, B.; Zhang, D.; Song, Z.; et al. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 2024, 7, 157–167. [Google Scholar] [CrossRef]
- Gong, X.; Li, Z.; Zhao, L.; Wang, T.; Jin, R.; Yan, X.; Liu, F.; Sun, P.; Lu, G. Indoor Air Quality Monitoring System with High Accuracy of Gas Classification and Concentration Prediction via Selective Mechanism Research. ACS Sens. 2024, 9, 5828–5838. [Google Scholar] [CrossRef]
- Zhu, H.; Yuan, Z.; Shen, Y.; Gao, H.; Meng, F. Highly Selective and ppb-Level Butanone Sensors Based on SnO2/NiO Heterojunction-Modified ZnO Nanosheets with Electron Polarity Transport Properties. ACS Sens. 2023, 8, 2635–2645. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Tang, K.; Wang, H.; Chen, T.; Jiang, K.; Zhou, T.; Quan, H.; Guo, R. Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Microsyst. Nanoeng. 2022, 8, 67. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Y.; Cheng, W.; Li, X.; Chen, K.; Li, F.; Yang, D. Dual-gas sensing via SnO2-TiO2 heterojunction on MXene: Machine learning-enhanced selectivity and sensitivity for hydrogen and ammonia detection. Sens. Actuators B Chem. 2025, 429, 137340. [Google Scholar] [CrossRef]
- Ahmed, A.; Naseem Siddique, M.; Alam, U.; Ali, T.; Tripathi, P. Improved photocatalytic activity of Sr doped SnO2 nanoparticles: A role of oxygen vacancy. Appl. Surf. Sci. 2019, 463, 976–985. [Google Scholar] [CrossRef]
- Tasisa, Y.E.; Sarma, T.K.; Sahu, T.K.; Krishnaraj, R. Phytosynthesis and characterization of tin-oxide nanoparticles (SnO2-NPs) from Croton macrostachyus leaf extract and its application under visible light photocatalytic activities. Sci. Rep. 2024, 14, 10780. [Google Scholar] [CrossRef] [PubMed]
- Putra, S.D.H.; Halim, D.A.; Yogiswara, C.W.; Aziizudin, A.; Purnomo, A. Electrochemical Characterization Techniques for Performance Optimization in Dye-sensitized Solar Cells: A Narrative Review. Motiv. J. Mech. Electr. Ind. Eng. 2024, 6, 313–328. [Google Scholar]
- Qazi, N.U.S.; Iqbal, M.; Farooq, M.U.; Rehman, W.; Thebo, K.H.; Kazi, M.; Ibrar, A. Synthesis and characterization of Mo-doped SnO2 nanostructure-based photoanodes for efficient dye-sensitized solar cells. J. Mol. Struct. 2025, 1341, 142456. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Tian, X.; Hong, Y.; Nie, Y.; Su, N.; Jin, G.; Zhai, Z.; Fu, C. Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem. Eng. J. 2021, 404, 127146. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, S. Efficient and Stable Quantum-Dot Light-Emitting Diodes Enabled by Tin Oxide Multifunctional Electron Transport Layer. Adv. Opt. Mater. 2022, 10, 2102404. [Google Scholar] [CrossRef]
- Xin, Y.; Pan, S.; Hu, X.; Miao, C.; Nie, S.; Mou, H.; Xiao, W. Engineering amorphous SnO2 nanoparticles integrated into porous N-doped carbon matrix as high-performance anode for lithium-ion batteries. J. Colloid Interface Sci. 2023, 639, 133–144. [Google Scholar] [CrossRef]
- Min, X.; Sun, B.; Chen, S.; Fang, M.; Wu, X.; Liu, Y.G.; Abdelkader, A.; Huang, Z.; Liu, T.; Xi, K.; et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606. [Google Scholar] [CrossRef]
- Masuda, Y. Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuators B Chem. 2022, 364, 131876. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, J.-Y.; Lee, J.-H.; Mirzaei, A.; Kim, H.W.; Hishita, S.; Kim, S.S. Indium-implantation-induced enhancement of gas sensing behaviors of SnO2 nanowires by the formation of homo-core–shell structure. Sens. Actuators B Chem. 2020, 321, 128475. [Google Scholar] [CrossRef]
- Sharma, A.; Ahmed, A.; Singh, A.; Oruganti, S.K.; Khosla, A.; Arya, S. Review—Recent Advances in Tin Oxide Nanomaterials as Electrochemical/Chemiresistive Sensors. J. Electrochem. Soc. 2021, 168, 027505. [Google Scholar] [CrossRef]
- Lee, K.; Sahu, M.; Hajra, S.; Mohanta, K.; Kim, H.J. Effect of sintering temperature on the electrical and gas sensing properties of tin oxide powders. Ceram. Int. 2021, 47, 22794–22800. [Google Scholar] [CrossRef]
- Qu, Y.; Zheng, H.; Lei, Y.; Ding, Z.; Li, S.; Liu, S.; Ji, W. Room Temperature NH3 Selective Gas Sensors Based on Double-Shell Hierarchical SnO2@polyaniline Composites. Sensors 2024, 24, 1824. [Google Scholar] [CrossRef]
- Bi, W.; Zhu, J.; Zheng, B.; Liu, S.; Zhang, L. Synthesis of Pd-Doped SnO2 and Flower-like Hierarchical Structures for Efficient and Rapid Detection of Ethanolamine. Molecules 2024, 29, 3650. [Google Scholar] [CrossRef]
- Fan, H.; Zheng, X.; Shen, Q.; Wang, W.; Dong, W. Hydrothermal synthesis and their ethanol gas sensing performance of 3-dimensional hierarchical nano Pt/SnO2. J. Alloys Compd. 2022, 909, 164693. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Li, P.; Shi, J.; Gao, X. Effect of rare earth doping on electronic and gas-sensing properties of SnO2 nanostructures. J. Alloys Compd. 2022, 909, 164687. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Liu, X.; Li, J.; Wu, J.; Zeng, M.; Yang, J.; Hu, N.; Zhu, H.; Xu, L.; et al. Trace Detection of Nitrogen Dioxide via Porous Tin Dioxide Nanopods with High Specific Surface Area and Enhanced Charge Transfer. ACS Sens. 2025, 10, 4383–4390. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Hu, Z.; Li, H.-Y.; Liu, J.; Zeng, Y.; Wang, J.; Huang, Y.; Miao, L.; Zhang, G.; Huang, Y.; et al. Template-Free Construction of Tin Oxide Porous Hollow Microspheres for Room-Temperature Gas Sensors. ACS Appl. Mater. Interfaces 2021, 13, 25111–25120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, L.; Ni, W.; Cheng, W.; Yang, Z.; Xu, S.; Wang, T.; Zhang, B.; Xuan, F. NiO/ZnO Nanocomposites for Multimodal Intelligent MEMS Gas Sensors. ACS Sens. 2025, 10, 2531–2541. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, Q.; Qiu, T.; He, X.; Chen, J.; Qi, R.; Huang, R.; Zheng, T.; Tian, Y. Ultrasensitive Sensing of Volatile Organic Compounds Using a Cu-Doped SnO2-NiO p-n Heterostructure That Shows Significant Raman Enhancement. Angew. Chem. 2021, 133, 26464–26471. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Zhang, L.; Zhou, Z.; Li, Y.; Li, H.; Ning, K.; Chen, X. Ultra-high response and selectivity of triethylamine sensor based on NiO/Pd/SnO2 multiple heterojunctions composite. Sens. Actuators B Chem. 2025, 435, 137652. [Google Scholar] [CrossRef]
- Pradyumn; Barman, P.B.; Sil, A.; Hazra, S.K. Recent advancement in selective gas sensors and role of machine learning. J. Alloys Compd. 2025, 1030, 180757. [Google Scholar] [CrossRef]
- Bai, X.; Lv, H.; Liu, Z.; Chen, J.; Wang, J.; Sun, B.; Zhang, Y.; Wang, R.; Shi, K. Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. J. Hazard. Mater. 2021, 416, 125830. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Y.; Qiu, P.; Lei, S. SnO2-Co3O4 nanocomposite sensor: Achieving ultra-selective hydrogen detection in mixed gas environments. Sens. Actuators B Chem. 2025, 422, 136521. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Yuan, K.; Yang, J.-G.; Ma, H.-P.; Wang, T.; Ji, X.-M.; Feng, J.-J.; Devi, A.; Lu, H.-L. Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sens. Actuators B Chem. 2019, 290, 233–241. [Google Scholar] [CrossRef]
- Ahmed, S.; Sinha, S.K. Studies on nanomaterial-based p-type semiconductor gas sensors. Environ. Sci. Pollut. Res. 2022, 30, 24975–24986. [Google Scholar] [CrossRef]
- Simion, C.E.; Ghica, C.; Mihalcea, C.G.; Ghica, D.; Mercioniu, I.; Somacescu, S.; Florea, O.G.; Stanoiu, A. Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity. Chemosensors 2021, 9, 244. [Google Scholar] [CrossRef]
- Wang, T.; Duan, X.; Bai, R.; Li, H.; Qin, C.; Zhang, J.; Duan, Z.; Chen, K.J.; Pan, F. Ni-Electrocatalytic CO2 Reduction Toward Ethanol. Adv. Mater. 2024, 36, 2410125. [Google Scholar] [CrossRef]
- Song, Z.; Shen, T.; Wu, Z.; Hu, Y.; Liu, G.; Yu, T.; Song, Y.-F. Highly Exposed Low-Valence Ni Sites of NiO(111) for Efficient Electrocatalytic Biomass Upgrading. ACS Catal. 2025, 15, 1727–1738. [Google Scholar] [CrossRef]
- Budania, Y.; Chauhan, M.; Mishra, S.; Singh, S. N/NiO-ornated graphitic fiber-engrained micro-carbon beads: Innovative packed bed type capacitive electrodes for microbial fuel cells. Chem. Eng. J. 2024, 499, 156018. [Google Scholar] [CrossRef]
- Jang, I.; Kelsall, G.H. Fabrication of 3D NiO-YSZ structures for enhanced performance of solid oxide fuel cells and electrolysers. Electrochem. Commun. 2022, 137, 107260. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Gao, L.; Zhang, D.; Guo, Y.; Xu, R. NiO Nanoparticles Anchored on N-Doped Laser-Induced Graphene for Flexible Planar Micro-Supercapacitors. ACS Appl. Nano Mater. 2022, 5, 11314–11323. [Google Scholar] [CrossRef]
- Xin, G.; Liu, F.; Ju, T.; Cheng, Y.; Bao, J.; Sun, W.; Song, J.; Bulin, C. In-situ generation of Ni component through interface engineering of NiO/graphene composite for high-performance supercapacitor. Chem. Eng. J. 2025, 513, 162863. [Google Scholar] [CrossRef]
- Kang, H.; Zhang, M.; Zhong, M.; Shi, Z.; Zhang, J.; Su, B.; Lei, Z. Biomass-Templated Preparation of Multifunctional Ni/NiO@C Hollow-Fiber Hierarchical Composite Materials. Energy Fuels 2025, 39, 14812–14820. [Google Scholar] [CrossRef]
- Popkov, S.I.; Krasikov, A.A.; Velikanov, D.A.; Kirillov, V.L.; Martyanov, O.N.; Balaev, D.A. Formation of the magnetic subsystems in antiferromagnetic NiO nanoparticles using the data of magnetic measurements in fields up to 250 kOe. J. Magn. Magn. Mater. 2019, 483, 21–26. [Google Scholar] [CrossRef]
- Raza, M.H.; Movlaee, K.; Leonardi, S.G.; Barsan, N.; Neri, G.; Pinna, N. Gas Sensing of NiO-SCCNT Core–Shell Heterostructures. Adv. Funct. Mater. 2020, 30, 1906874. [Google Scholar] [CrossRef]
- Shuai, Y.; Peng, R.; He, Y.; Liu, X.; Wang, X.; Guo, W. NiO/BiVO4 p-n heterojunction microspheres for conductometric triethylamine gas sensors. Sens. Actuators B Chem. 2023, 384, 133625. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Sui, X.; Zhang, W.; Jiang, H.; Liu, G.; Li, B.; Zhou, J.; Sheng, Y.; Xie, E.; et al. ZnO nanowire/NiO foam 3D nanostructures for high-performance ethylene glycol sensing. Sens. Actuators B Chem. 2024, 400, 134918. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q.; Li, C.; Cao, T.; Wang, T.; Fan, F.; Zhang, X.; Fu, Y. Enhancing the Hydrogen-Sensing Performance of p-Type PdO by Modulating the Conduction Model. ACS Appl. Mater. Interfaces 2021, 13, 52754–52764. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Zhang, B.; Wang, Y.; Bala, H.; Zhang, Z. Structural evolution of NiO from porous nanorods to coral-like nanochains with enhanced methane sensing performance. Sens. Actuators B Chem. 2021, 334, 129645. [Google Scholar] [CrossRef]
- Patil, P.; Nakate, Y.T.; Ambare, R.C.; Ingole, R.S.; Kadam, S.L.; Nakate, U.T. 2-D NiO nanostructured material for high response acetaldehyde sensing application. Mater. Lett. 2021, 293, 129757. [Google Scholar] [CrossRef]
- Srivastava, S.; Gangwar, A.K.; Kumar, A.; Gupta, G.; Singh, P. Room temperature RF magnetron sputtered nanocrystalline NiO thin films for highly responsive and selective H2S gas sensing at low ppm concentrations. Mater. Res. Bull. 2023, 165, 112330. [Google Scholar] [CrossRef]
- Song, L.; Lukianov, A.; Butenko, D.; Li, H.; Zhang, J.; Feng, M.; Liu, L.; Chen, D.; Klyui, N. Facile synthesis of hierarchical tin oxide nanoflowers with ultra-high methanol gas sensing at low working temperature. Nanoscale Res. Lett. 2019, 14, 84. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, H.; Hu, J.; Rong, X.; Zhang, W.; Wang, Y.; Li, S.; Li, G.; Wang, D. Facile engineering of metal–organic framework derived SnO2@NiO core–shell nanocomposites based gas sensor toward superior VOCs sensing performance. Chem. Eng. J. 2024, 501, 157692. [Google Scholar] [CrossRef]
- Das, S.; Kumar, A.; Singh, J.; Kumar, M. Fabrication and modeling of laser ablated NiO nanoparticles decorated SnO2 based formaldehyde sensor. Sens. Actuators B Chem. 2023, 387, 133824. [Google Scholar] [CrossRef]
- Budak, B.; Demirel, S. Synthesis and characterization of PANI and PANI/nanometal oxides, photocatalytic and adsorbent applications. Turk. J. Chem. 2023, 47, 346–363. [Google Scholar] [CrossRef]
- Tian, K.; Fu, Y.; Haq, I.; Kuang, S.; Xiong, G.; Zhao, Z.; Zhou, T.; Weng, J.; Peng, X.; Xiong, L. Fabrication of MOF-derived porous Au@ Co-ZnO nanostructures with excellent C2H5OH sensing performance. Microstructures 2025, 5, 2025041. [Google Scholar] [CrossRef]
- Meng, D.; Liu, D.; Wang, G.; Shen, Y.; San, X.; Li, M.; Meng, F. Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens. Actuators B Chem. 2018, 273, 418–428. [Google Scholar] [CrossRef]
- Dong, J.; Guo, J.; Shao, T.; Kou, H.; Cheng, Y.; Zhang, F.; Liu, X.; Tian, S. Enhanced ethanol gas sensing performance of Ag/SnO2 composites. Sens. Actuators B Chem. 2025, 423, 136721. [Google Scholar] [CrossRef]
- Xu, K.; Kan, Z.; Zhang, F.; Qu, Y.; Li, S.; Liu, S. Hollow multi-shelled structural SnO2 with multiple spatial confinement for ethanol gas sensing. Mater. Lett. 2023, 338, 134070. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Wang, S.; Wang, X.; Chen, Y.; Zhang, G.; Ma, S.; Pei, S. Design of high-sensitivity ethanol sensor based on Pr-doped SnO2 hollow beaded tubular nanostructure. Vacuum 2021, 189, 110244. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, T.; Zhang, L.; Yang, J.; Han, W.; Sun, Y.; Liu, F.; Sun, P.; Zhang, H.; Lu, G. Separated detection of ethanol and acetone based on SnO2-ZnO gas sensor with improved humidity tolerance. Sens. Actuators B Chem. 2023, 393, 134257. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Y.; Shao, G.; Zhu, K.; Cui, S.; Wang, W.; Shen, X. Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels. ACS Appl. Mater. Interfaces 2021, 13, 20467–20478. [Google Scholar] [CrossRef]
- Shooshtari, M. Gold-decorated vertically aligned carbon nanofibers for high-performance room-temperature ethanol sensing. Microchim. Acta 2025, 192, 517. [Google Scholar] [CrossRef]
- Panžić, I.; Bafti, A.; Radovanović-Perić, F.; Gašparić, D.; Shi, Z.; Borenstein, A.; Mandić, V. Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review. Appl. Sci. 2025, 15, 2522. [Google Scholar] [CrossRef]
- Lv, S.; Pu, Q.; Wang, B.; Sun, P.; Wang, J.; Li, Q.; Zhu, L.; Wang, L.; Liu, F.; Lu, G. Discriminative Detection for Multiple Volatile Organic Compounds via Dynamic Temperature Modulation Based on Mixed Potential Gas Sensor. ACS Sens. 2025, 10, 3638–3646. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Gao, X.; Zhang, Z.; Wang, W.; Sheng, J.; Li, J.; Sun, Y.; Dong, F. Gas discrimination and concentration prediction based on sensing features deriving from molecular interfacial interactions. Sens. Actuators B Chem. 2024, 409, 135518. [Google Scholar] [CrossRef]
- Kumar, S.; Gowthaman, P.; Deenathayalan, J. Preparation of Nanostructured SnO2-NiO Composite Semiconductor for Gas Sensor Applications. Int. J. Adv. Res. Sci. Commun. Technol. 2021, 11, 2581–9429. [Google Scholar] [CrossRef]
- Ciftyurek, E.; Li, Z.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2022, 23, 29. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of temperature and humidity on the sensing performance of TiO2 nanowire-based ethanol vapor sensors. Nanotechnology 2021, 32, 325501. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Shi, Y.-T.; Xie, K.-F.; Wang, J.-Y.; Wang, Y.-F.; Zheng, Y.; Fang, S.-M.; Zhang, Y.-H. Engineering of in-plane SnO2-Sn3O4 hierarchical nanoflower heterojunctions for enhanced formaldehyde sensing. Appl. Surf. Sci. 2023, 614, 156110. [Google Scholar] [CrossRef]
- Thi Thanh Le, D.; Manh Hung, C. Facile synthesis and electrical characteristics of n-SnO2/p-NiO nanowire heterojunctions. Commun. Phys. 2019, 29, 77. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W.; Wang, Y.; Zeng, X.; Hu, Y. A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions. Nano Energy 2022, 92, 106741. [Google Scholar] [CrossRef]
- Nath, V.G.; Tomar, S.; Rao, N.N.; Kovilakath, M.S.N.; John, N.S.; Bhattacharjee, S.; Lee, S.C.; Subramanian, A. Unraveling the Synergy of Interfacial Engineering in In Situ Prepared NiO/NdNiO3 for ppb-Level SO2 Sensing: Mechanistic and First-Principles Insights. Small 2025, 21, e2502192. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Ge, B.; Yang, T.; Wang, S.; Liu, Y.; Gao, S. In-situ reconstructed Cu/NiO nanosheets synergistically boosting nitrate electroreduction to ammonia. Chin. Chem. Lett. 2025, 36, 110657. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Dou, X.; Shao, J.; Luo, Y.; Liu, F.; Li, C.; Yan, L.; Wang, C.; Li, Y.; Cai, Y.; et al. Fabrication of Low-Temperature ppb-Level Ethanol Gas Sensor Based on Hierarchical NiO-SnO2 Nanoflowers Under Hydrothermal Conditions. Nanomaterials 2025, 15, 1471. https://doi.org/10.3390/nano15191471
Song L, Dou X, Shao J, Luo Y, Liu F, Li C, Yan L, Wang C, Li Y, Cai Y, et al. Fabrication of Low-Temperature ppb-Level Ethanol Gas Sensor Based on Hierarchical NiO-SnO2 Nanoflowers Under Hydrothermal Conditions. Nanomaterials. 2025; 15(19):1471. https://doi.org/10.3390/nano15191471
Chicago/Turabian StyleSong, Liming, Xiaoxin Dou, Jianmei Shao, Yuanzheng Luo, Fumiao Liu, Chengyong Li, Lijuan Yan, Chuhong Wang, Yuting Li, Yuqing Cai, and et al. 2025. "Fabrication of Low-Temperature ppb-Level Ethanol Gas Sensor Based on Hierarchical NiO-SnO2 Nanoflowers Under Hydrothermal Conditions" Nanomaterials 15, no. 19: 1471. https://doi.org/10.3390/nano15191471
APA StyleSong, L., Dou, X., Shao, J., Luo, Y., Liu, F., Li, C., Yan, L., Wang, C., Li, Y., Cai, Y., He, J., Dai, Z., Sun, R., & Xie, Q. (2025). Fabrication of Low-Temperature ppb-Level Ethanol Gas Sensor Based on Hierarchical NiO-SnO2 Nanoflowers Under Hydrothermal Conditions. Nanomaterials, 15(19), 1471. https://doi.org/10.3390/nano15191471