High Transmission Efficiency Hybrid Metal-Dielectric Metasurfaces for Mid-Infrared Spectroscopy
Abstract
1. Introduction
2. Design and Simulations
2.1. Design
2.2. Simulations
3. Results and Discussions
3.1. Parametric Sweeps
3.2. Physical Mechanism of the Resonance
3.3. Influence of Incidence Angle on Transmission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Picqué, N.; Hänsch, T.W. Mid-IR spectroscopic sensing. Opt. Photon. News 2019, 30, 26–33. [Google Scholar] [CrossRef]
- Greene, T.P.; Kelly, D.M.; Stansberry, J.; Leisenring, J.M.; Egami, E.; Schlawin, E.A.; Chu, L.; Hodapp, K.W.; Rieke, M.J. λ = 2.4–5 μm spectroscopy with the JWST NIRCam instrument. J. Astron. Telesc. Instrum. Syst. 2017, 3, 035001. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, A.; Schmitt, K. 16-Mid-infrared gas-sensing systems and applications. In Mid-Infrared Optoelectronics; Tournié, E., Cerutti, L., Eds.; Woodhead Publishing: Duxford, UK, 2020; pp. 661–715. [Google Scholar]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.-Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef]
- Williams, C.; Hong, N.; Julian, M.; Borg, S.; Kim, H.J. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe. Opt. Express 2020, 28, 10583–10594. [Google Scholar] [CrossRef]
- Piegari, A.; Bulir, J. Variable narrowband transmission filters with a wide rejection band for spectrometry. Appl. Opt. 2006, 45, 3768–3773. [Google Scholar] [CrossRef]
- Macleod, A. Thin-Film Optical Filters, 5th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Lapray, P.J.; Wang, X.; Thomas, J.B.; Gouton, P. Multispectral filter arrays: Recent advances and practical implementation. Sensors 2014, 14, 21626–21659. [Google Scholar] [CrossRef]
- Wang, A.; Dan, Y. Mid-infrared plasmonic multispectral filters. Sci. Rep. 2018, 8, 1125. [Google Scholar] [CrossRef]
- Kristensen, A.; Yang, J.K.W.; Bozhevolnyi, S.I.; Link, S.; Nordlander, P.; Halas, N.J.; Mortensen, N.A. Plasmonic colour generation. Nat. Rev. Mater. 2016, 2, 16088. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, L.; Yang, J.K.W.; Yeo, S.P.; Qiu, C.-W. Color generation via subwavelength plasmonic nanostructures. Nanoscale 2015, 7, 6409–6419. [Google Scholar] [CrossRef]
- Gildas, F.; Dan, Y. Review of nanostructure color filters. J. Nanophotonics 2019, 13, 020901. [Google Scholar] [CrossRef]
- He, Q.; Youngblood, N.; Cheng, Z.; Miao, X.; Bhaskaran, H. Dynamically tunable transmissive color filters using ultra-thin phase change materials. Opt. Express 2020, 28, 39841–39849. [Google Scholar] [CrossRef]
- Vashistha, V.; Vaidya, G.; Gruszecki, P.; Serebryannikov, A.E.; Krawczyk, M. Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas. Sci. Rep. 2017, 7, 8092. [Google Scholar] [CrossRef]
- Koshelev, K.; Bogdanov, A.; Kivshar, Y. Engineering with Bound States in the Continuum. Opt. Photon. News 2020, 31, 38–45. [Google Scholar] [CrossRef]
- Yang, B.; Liu, W.; Choi, D.; Li, Z.; Cheng, H.; Tian, J.; Chen, S. High-Performance Transmission Structural Colors Generated by Hybrid Metal-Dielectric Metasurfaces. Adv. Opt. Mater. 2021, 9, 2100895. [Google Scholar] [CrossRef]
- Ray, D.; Raziman, T.; Santschi, C.; Etezadi, D.; Altug, H.; Martin, O.J. Hybrid metal-dielectric metasurfaces for refractive index sensing. Nano Lett. 2020, 20, 8752–8759. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, T.; Liu, Q.; Ma, L.; Du, Q.; Duan, H. Enhanced directional fluorescence emission of randomly oriented emitters via a metal–dielectric hybrid nanoantenna. J. Phys. Chem. C 2019, 123, 21150–21160. [Google Scholar] [CrossRef]
- Soliman, A.; Williams, C.; Wilkinson, T.D. Design of hybrid metal-dielectric (Al–TiO2) metasurfaces RGB color filters. J. Phys. Photonics 2025, 7, 025025. [Google Scholar] [CrossRef]
- Soliman, A.; Williams, C.; Hopper, R.; Udrea, F.; Butt, H.; Wilkinson, T.D. High-Transmission Mid-Infrared Bandpass Filters using Hybrid Metal-Dielectric Metasurfaces for CO2 Sensing. Adv. Opt. Mater. 2025, 13, 2402603. [Google Scholar] [CrossRef]
- Green, E.I. The story of Q. Am. Sci. 1955, 43, 584–594. [Google Scholar]
- Fang, J.; Huang, K.; Qin, R.; Liang, Y.; Wu, E.; Yan, M.; Zeng, H. Wide-field mid-infrared hyperspectral imaging beyond video rate. Nat. Commun. 2024, 15, 1811. [Google Scholar] [CrossRef] [PubMed]
- Köhler, M.H.; Schardt, M.; Rauscher, M.S.; Koch, A.W. Gas Measurement Using Static Fourier Transform Infrared Spectrometers. Sensors 2017, 17, 2612. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, J.; Guarnizo, G. Multispectral Mid-Infrared Camera System for Accurate Stand-Off Temperature and Column Density Measurements on Flames. Sensors 2021, 21, 8395. [Google Scholar] [CrossRef]
- Xie, Y.; Fei, S.; Min, R.; Xie, Y.; Du, W.; Yan, Z. Ultraviolet Concurrent Surface Lattice Resonances and Propagating Plasmons on All-Silicon Metasurface for High-Q Perfect Absorption. Opt. Commun. 2025, 594, 132340. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, Q.; Zhou, C.; Zhong, Y.; Fei, S.; Chen, J.; Guo, T.; Du, W.; Yan, Z. Rhodium ultraviolet plasmonic nanocavities with narrow plasmon-induced reflection and polarization-tunable field enhancement for high-performance SERS and sensing. Opt. Express 2025, 33, 30648–30659. [Google Scholar] [CrossRef]
- Fei, S.; Dai, X.; Wu, Q.; Zhong, Y.; Guo, T.; Pu, X.; Du, W.; Yan, Z. Thermo-optic metasurface with multispectral ultraviolet-to-near-infrared plasmon-induced near-perfect absorptions. Phys. Lett. A 2025, 555, 130803. [Google Scholar] [CrossRef]
- Chen, J.; Guo, T.; Guo, M.; Xie, Y.; Fei, S.; Lu, X.; Du, W.; Yan, Z. Tunable ultraviolet to visible dual band perfect absorption via second order magnetic plasmon induced reflectance in 3D metamaterials. J. Magn. Magn. Mater. 2025, 630, 173389. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces: Theory; Wiley, John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ulrich, R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 1967, 7, 37–55. [Google Scholar] [CrossRef]
- Zaman, M.A.; Hesselink, L. Dynamically controllable plasmonic tweezers using C-shaped nano-engravings. Appl. Phys. Lett. 2022, 121, 181108. [Google Scholar] [CrossRef]
- Zaman, M.A.; Hesselink, L. Plasmonic response of nano-C-apertures: Polarization dependent field enhancement and circuit model. Plasmonics 2023, 18, 155–164. [Google Scholar] [CrossRef]
- Venuthurumilli, P.K.; Ye, P.D.; Xu, X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861–4867. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Smith, R.; Ho, W.O.; Saffell, J.R.; Tatam, R.P. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sens. Actuators B Chem. 2013, 186, 580–588. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cho, H.-Y.; Choi, H.K.; Lee, J.-Y.; Choi, J.-W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci. 2018, 19, 2021. [Google Scholar] [CrossRef]
- Baek, K.; Kim, Y.; Mohd-Noor, S.; Hyun, J.K. Mie Resonant Structural Colors. ACS Appl. Mater. Interfaces 2020, 12, 5300–5318. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, Z.; Zhang, C.; Gao, Y.; Duan, Z.; Xiao, S.; Song, Q. All-Dielectric Full-Color Printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452. [Google Scholar] [CrossRef]
- Leitis, A.; Heßler, A.; Wahl, S.; Wuttig, M.; Taubner, T.; Tittl, A.; Altug, H. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 2020, 30, 1910259. [Google Scholar] [CrossRef]
- Lumerical Solutions, Inc. Available online: http://www.lumerical.com/tcad-products/fdtd/ (accessed on 15 September 2025).
- Chen, P.-Z.; Hou, G.; Suo, S.; Ni, G.; Zhang, J.; Zhang, X.; Zhao, Y. Simulation, design and fabrication of one-dimensional photonic crystal back reflector for silicon thin film solar cell. Acta Phys. Sin. 2014, 63, 128801. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, M.; Ruan, Q.; Zhou, Y.; Chen, Y.; Dai, P.; Yang, Z.; Lin, Z.; Long, Y.; Li, Y.; et al. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research 2018, 2018, 8109054. [Google Scholar] [CrossRef]
- Hinamoto, T.; Fujii, M. MENP: An open-source MATLAB implementation of multipole expansion for nanophotonics. OSA Contin. 2021, 4, 1640–1648. [Google Scholar] [CrossRef]
- Park, C.-S.; Shrestha, V.R.; Yue, W.; Gao, S.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci. Rep. 2017, 7, 2556. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Peng, J.; Du, J.; Wang, K.; Huang, S.; Hou, Y. Room Temperature Plexcitonic Optical Chirality Based on Spontaneous Symmetry Breaking Plasmonic Nanoparticles. Laser Photonics Rev. 2025, 19, 2402024. [Google Scholar] [CrossRef]
- Zhong, Y.; Goldenfeld, Z.; Li, K.; Streyer, W.; Yu, L.; Nordin, L.; Murphy, N.; Wasserman, D. Mid-wave infrared narrow bandwidth guided mode resonance notch filter. Opt. Lett. 2017, 42, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.A.; Dew, S.K.; Stepanova, M. SML resist processing for high-aspect-ratio and high-sensitivity electron beam lithography. Nanoscale Res. Lett. 2013, 8, 139. [Google Scholar] [CrossRef] [PubMed]
Filter Type | Transmission Efficiency | FWHM/Bandwidth | Q-Factor | Mode | Reference |
---|---|---|---|---|---|
This work (hybrid MD metasurface) | 87% | 43 nm | ≈99.5 | Transmission | — |
Fabry–Pérot bandpass (GeSbTe phase-change) | 60–70% | 50–65 nm | 70–90 | Transmission | [6] |
Guided-mode resonance (mid-IR) | ~65–75% | ~55 nm (4.25 µm) | ~77 | Transmission | [46] |
Plasmonic metasurface bandpass (LWIR) | ~40–50% | ~1.5 µm | <10 | Transmission | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, A.; Williams, C.; Wilkinson, T.D. High Transmission Efficiency Hybrid Metal-Dielectric Metasurfaces for Mid-Infrared Spectroscopy. Nanomaterials 2025, 15, 1456. https://doi.org/10.3390/nano15181456
Soliman A, Williams C, Wilkinson TD. High Transmission Efficiency Hybrid Metal-Dielectric Metasurfaces for Mid-Infrared Spectroscopy. Nanomaterials. 2025; 15(18):1456. https://doi.org/10.3390/nano15181456
Chicago/Turabian StyleSoliman, Amr, Calum Williams, and Timothy D. Wilkinson. 2025. "High Transmission Efficiency Hybrid Metal-Dielectric Metasurfaces for Mid-Infrared Spectroscopy" Nanomaterials 15, no. 18: 1456. https://doi.org/10.3390/nano15181456
APA StyleSoliman, A., Williams, C., & Wilkinson, T. D. (2025). High Transmission Efficiency Hybrid Metal-Dielectric Metasurfaces for Mid-Infrared Spectroscopy. Nanomaterials, 15(18), 1456. https://doi.org/10.3390/nano15181456