High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of PANI@CNT and PANI/Graphene@CNT Fiber Electrodes
2.2. Assembling of the CFASC
2.3. Materials Characterization and Electrochemical Measurements
3. Results
3.1. Structure and Morphology of the Fiber-Shaped PANI/Graphene@CNT Electrode
3.2. Electrochemical Performance of the Fibrous PANI/Graphene@CNT Samples
3.3. Electrochemical Evaluation of the CFASC Devices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Chen, D.; Han, W.; Hou, C.; Chen, G.; Han, J.; Zhang, X. Sugar-derived carbon-based fiber with core-sheath structure for fiber-shaped supercapacitors with high strength and superior capacitive performance. Adv. Funct. Mater. 2024, 35, 202416249. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Yan, X.; Cao, S.; Li, M.; Liu, Y.; Liu, S.; Sun, Y.; Zheng, X.; Zhang, Y. A facile method for the preparation of three-dimensional CNT sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 22559. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Yan, X.; Cao, S.; Li, M.; Guo, Y.; Huan, Y.; Wen, X.; Zhang, Y. A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale 2018, 10, 9360. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Zheng, X.; Si, H.; Li, M.; Liu, Y.; Sun, Y.; Jiang, Y.; Zhang, Y. Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage. J. Mater. Chem. A 2016, 4, 17704. [Google Scholar] [CrossRef]
- Tian, W.; Li, Y.; Zhou, J.; Wang, T.; Zhang, R.; Cao, J.; Luo, M.; Li, N.; Zhang, N.; Gong, H.; et al. Implantable and Biodegradable Micro-Supercapacitor Based on a Superassembled Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Appl. Mater. Interfaces 2021, 13, 8285–8293. [Google Scholar] [CrossRef]
- Yu, D.S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.C.; Zhang, Q.; Dai, L.M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562. [Google Scholar] [CrossRef]
- Wei, W.; Guo, Z.; Qin, X. Innovative solvent-free compound-direct synthesis of defect-rich ultra-thin nis nanosheets for high-performance supercapacitors. Nanoscale 2024, 16, 2522–2530. [Google Scholar] [CrossRef]
- Le, V.T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q.A.; Pham, D.T.; Lee, J.-H.; Kim, S.-W.; Lee, Y.H. Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes. ACS Nano 2013, 7, 5940–5947. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, C.; Jiang, Y.; Zhang, Y.; Wei, Y.; Liu, H.; Yu, Z.; Shi, G.; Wang, G. Preparation of n-doped biomass carbon electrode via fenton-like reaction and khco3activation for supercapacitors. J. Mater. Sci. 2025, 60, 10981–10996. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Sun, J.; Zhao, L.; Wang, Y.; Wang, J.; Wu, Y.; Zhang, W.; Tang, Y.; Fan, Z.; Su, Z. ZIF-derived sulfides with tremella-like core–shell structure for high performance supercapacitors. J. Colloid Interface Sci. 2024, 660, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Gu, T.; Cao, Z.; Wei, B.; Yu, J.; Li, F.; Byun, J.-H.; Lu, W.; Li, Q.; Chou, T.-W. Carbon Nanotube Fiber Based Stretchable Wire-Shaped Supercapacitors. Adv. Energy Mater. 2013, 4, 1300759. [Google Scholar] [CrossRef]
- Zheng, X.; Yan, X.; Sun, Y.; Li, Y.; Li, M.; Zhang, G.; Zhang, Y. Band alignment engineering for high-energy-density solid-state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)2 interface. J. Mater. Chem. A 2016, 4, 17981. [Google Scholar] [CrossRef]
- Mashkoor, F.; Shoeb, M.; Jeong, H.; Khan, M.N.; Jeong, C. In-depth analysis of vartm-based solid-state supercapacitors utilizing cnt-dispersed cobalt-bismuth-samarium ternary hydroxide on woven carbon fiber for enhanced storage. J. Energy Chem. 2024, 97, 498–512. [Google Scholar] [CrossRef]
- Ren, J.; Bai, W.; Guan, G.; Zhang, Y.; Peng, H. Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Adv. Mater. 2013, 25, 5965–5970. [Google Scholar] [CrossRef]
- Meng, Q.; Wu, H.; Meng, Y.; Xie, K.; Wei, Z.; Guo, Z. High-Performance All-Carbon Yarn Micro-Supercapacitor for an Integrated Energy System. Adv. Mater. 2014, 26, 4100–4106. [Google Scholar] [CrossRef]
- Patil, P.H.; Kulkarni, V.V.; Mane, A.K.; Dongale, T.D.; Jadhav, S.A. Synthesis and electrochemical testing of novel doped polyaniline and biomass-derived carbon-based composite for supercapacitors. Polym. Adv. Technol. 2024, 35, 9. [Google Scholar] [CrossRef]
- Li, N.; Wang, D.; Liang, X.; Li, D.; Liu, G.; Sun, G.; Xu, G.; Zhang, X.; Li, Y. Multi-stage ordered mesoporous carbon-graphene aerogel-Ni3S2/Co4S3 for supercapacitor electrode. Electroanalysis 2022, 34, 252–257. [Google Scholar] [CrossRef]
- Kang, Z.; Li, Y.; Yu, Y.; Liao, Q.; Zhang, Z.; Guo, H.; Zhang, S.; Wu, J.; Si, H.; Zhang, X.; et al. Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application. J. Mater. Sci. 2018, 53, 10292–20301. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, J.; Zhong, Q.; Wen, Y.; Dong, Q.; Li, Y.; Jin, Q.; Lu, Y. N- and O- doped porous carbon nanosheets prepared from templating methodology for supercapacitors. Polymers 2025, 17, 1198. [Google Scholar] [CrossRef]
- Wong, S.I.; Lin, H.; Ma, T.; Sunarso, J.; Wong, B.T.; Jia, B. Binary ionic liquid electrolyte design for ultrahigh-energy density graphene-based supercapacitors. Mater. Rep. Energy 2022, 2, 100093. [Google Scholar] [CrossRef]
- Tseng, S.F.; Lin, J.Y.; Lin, J.Y. High-performance flexible asymmetric supercapacitors based on Hy-NiCoS/CNTs composites on porous graphene films. Energy 2024, 291, 130365. [Google Scholar] [CrossRef]
- Gu, Z.; Du, Y.; Yang, B.; Liu, X.; You, T.; Tian, W.; Tan, S.; Ji, J. GO regulated hydrogel electrolytes with superior conducing and antiswelling ability for flexible supercapacitors. Ind. Eng. Chem. Res. 2024, 63, 7176–7183. [Google Scholar] [CrossRef]
- Guan, X.; Wu, H.; Zhang, J.; Zhu, E.; Zou, T.; Nie, J.; Yang, L.; Liu, B.; Yin, P.; Wang, G. Designed synthesis of carbon-loaded partially vulcanized multi-metal hydroxide for high-performance hybrid supercapacitors. J. Energy Storage 2025, 109, 115157. [Google Scholar] [CrossRef]
- Dhakal, G.; Kumar, D.R.; Sahoo, S.; Shim, J. Litchi seed biowaste-derived activated carbon supporting matrix for efficient symmetric and asymmetric supercapacitors. Carbon 2023, 208, 277–289. [Google Scholar] [CrossRef]
- Sun, R.; Liu, X.; Zhang, N.; Gao, X.; Shao, Z.; Liu, J.; Zhao, Y.; Feng, W. Nanocrystaliron oxide fiber yarn electrodes with ultralong cycling life for flexible supercapacitors. J. Energy Storage 2024, 103, 114136. [Google Scholar] [CrossRef]
- Liao, H.; Zhong, L.; Deng, Y.; Chen, H.; Liao, G.; Xiao, Y.; Cheng, B.; Lei, S. A systematic study on Equisetum ramosissimum Desf. derived honeycomb porous carbon for supercapacitors: Insight into the preparation-structure-performance relationship. Appl. Surf. Sci. 2023, 623, 13. [Google Scholar] [CrossRef]
- Shinde, P.; Abbas, Q.; Chodankar, N.; Ariga, K.; Abdelkareem, M.A.; Olabi, A.G. Strengths, weaknesses, opportunities, and threats (swot) analysis of supercapacitors: A review. J. Energy Chem. 2023, 79, 611–638. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Roy, N.; Ramachandran, T.; Hussien, M.; Moniruzzaman, M.; Joo, S.W. Shaping the future of energy: The rise of supercapacitors progress in the last five years. J. Energy Storage 2024, 98, 113040. [Google Scholar] [CrossRef]
- Shabangoli, Y.; Esfandiar, A.; Torkashvand, M.; Astani, N.A. Flexible and free-standing mxene/redox-active dye molecules on nanofibers for high-performance symmetric supercapacitors. ACS Appl. Energy Mater. 2025, 8, 767–777. [Google Scholar] [CrossRef]
- Xun, M.; Shi, X.; Wang, H.; Li, X.; Miao, W.; Wang, X.; Sun, K.; Peng, H.; Ma, G.; Xu, Y. Ultrathin redox active hydrogel electrolytes for high performance flexible supercapacitors. RSC Appl. Polym. 2024, 2, 483–489. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Ogawa, T.; Zada, L.; Marwat, M.A.; Abdullah, S.M.; Khan, A.J.; Usman, M.; Khan, I.; Said, Z.; et al. Revolutionary NiCo layered double hydroxide electrodes: Advances, challenges, and future prospects for high-performance supercapacitors. Mater. Sci. Eng. R Rep. 2025, 166, 101041. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Ali, M.; Hakeem, A.S.; Yamani, Z.H. Advanced High-Energy All-Solid-State Hybrid Supercapacitor with Nickel-Cobalt-Layered Double Hydroxide Nanoflowers Supported on Jute Stick-Derived Activated Carbon Nanosheets. Small 2023, 20, 2306665. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, J.; Wang, X.; Zhang, J.; Tian, Z.; Zhu, E.; Yang, L.; Guan, X.; Ren, H.; Wu, J.; et al. A review of advanced electrolytes for supercapacitors. J. Energy Storage 2024, 103, 114338. [Google Scholar] [CrossRef]
- Fischer, J.; Thümmler, K.; Zlotnikov, I.; Mikhailova, D.; Fischer, S. Synthesis of cellulose acetate butyrate microspheres as precursor for hard carbon-based electrodes in symmetric supercapacitors. Polymers 2024, 16, 2176. [Google Scholar] [CrossRef]
- Poh, W.S.; Yiang, W.J.; Ong, W.J.; Show, P.L.; Foo, C.Y. Enhancing mxene-based supercapacitors: Role of synthesis and 3D architectures. J. Energy Chem. 2024, 91, 1–26. [Google Scholar] [CrossRef]
- Radhakanth, S.; Singhal, R. Seed-assisted growth of Nickel-MOFs on electrospun carbon nanofibers for superior asymmetric supercapacitors. ACS Appl. Eng. Mater. 2024, 2, 2521–2534. [Google Scholar] [CrossRef]
- Halder, J.; De, P.; Chandra, A. Synergistic contribution of redox additive electrolytes to significantly increase the performances of hybrid supercapacitors. J. Energy Storage 2024, 104, 114583. [Google Scholar] [CrossRef]
- Lu, Z.; Ren, X. Pseudocapacitive storage in high-performance flexible batteries and supercapacitors. Batteries 2025, 11, 63. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, Q.; Wang, Y.; Qin, Z. Restricted growth of polyaniline nanofiber arrays between holey graphene sheets on carbon cloth towards improved charge storage capacity. J. Energy Storage 2025, 106, 114857. [Google Scholar] [CrossRef]
- Yin, X.; Li, X.; Lv, P.; Liu, Z.; Li, H.; Bi, L.; Qi, M.; Mu, X.; Guo, D. Smart construction of polyaniline shell on Fe2O3 as enabling high performance anode toward flexible lithium-ion battery. J. Mater. Sci. 2024, 59, 20686–20702. [Google Scholar] [CrossRef]
Electrode Material | Electrolyte | Voltage Window | Ref. | ||
---|---|---|---|---|---|
PANI/graphene@CNT//CNT | PVA/H2SO4 | 0–1.6 V | 160.5 µWh cm−2 | 13.0 mW cm−2 | This work |
MnO2@ZnO@CNT//CNT | PVA/H2SO4 | 0–1.6 V | 20.7 µWh cm−2 | 0.329 mW cm−2 | [4] |
N-doped RGO-SWCNT composite fiber | PVA/H3PO4 | 0–1 V | 16.1 µWh cm−2 | 2.84 mW cm−2 | [6] |
MWCNT@CMF//CNT film | PVA/H3PO4 | 0–1 V | 9.8µW h cm−2 | 189.4 µW cm−2 | [8] |
RGO-fiber//RGO-fiber | PVA/H2SO4 | 0–0.8 V | 0.17 µWh cm−2 | 0.1 mW cm−2 | [10] |
CNT//CNT | PVA/H2SO4 | 0–0.8 V | 0.226 µWh cm−2 | 0.493 mW cm−2 | [12] |
OMC-MWCNT composite fiber | PVA/H3PO4 | 0–1 V | 1.77 µWh cm−2 | 0.032 mW cm−2 | [15] |
SWCNT-AC composite fiber | PVA/H2SO4 | 0–0.8 V | 3.29 µWh cm−2 | 3.36 mW cm−2 | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Yang, Q.; Xu, M.; Qiu, H.; Zhang, X.; Ma, J.; Gao, H.; Feng, X.; Li, Y. High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes. Nanomaterials 2025, 15, 1350. https://doi.org/10.3390/nano15171350
Ye C, Yang Q, Xu M, Qiu H, Zhang X, Ma J, Gao H, Feng X, Li Y. High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes. Nanomaterials. 2025; 15(17):1350. https://doi.org/10.3390/nano15171350
Chicago/Turabian StyleYe, Chuangen, Qingfeng Yang, Mingxian Xu, Haitang Qiu, Xiaozhen Zhang, Jianping Ma, Haiyang Gao, Xuansheng Feng, and Yong Li. 2025. "High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes" Nanomaterials 15, no. 17: 1350. https://doi.org/10.3390/nano15171350
APA StyleYe, C., Yang, Q., Xu, M., Qiu, H., Zhang, X., Ma, J., Gao, H., Feng, X., & Li, Y. (2025). High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes. Nanomaterials, 15(17), 1350. https://doi.org/10.3390/nano15171350