Neuromorphic Devices: Materials, Structures and Bionic Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The Future of Electronics Based on Memristive Systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Wan, C.J.; Guo, L.Q.; Shi, Y.; Wan, Q. Artificial Synapse Network on Inorganic Proton Conductor for Neuromorphic Systems. Nat. Commun. 2014, 5, 3158. [Google Scholar] [CrossRef] [PubMed]
- He, Y.L.; Nie, S.; Liu, R.; Jiang, S.S.; Shi, Y.; Wan, Q. Dual-Functional Long-Term Plasticity Emulated in IGZO-Based Photoelectric Neuromorphic Transistors. IEEE Electron Device Lett. 2019, 40, 818. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Xiao, H.; Gao, W.T.; Guo, Y.B. Restickable Oxide Neuromorphic Transistors with Spike-Timing-Dependent-Plasticity and Pavlovian Associative Learning Activities. Adv. Funct. Mater. 2018, 28, 1804025. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.T.; Qin, Z.Z.; Hu, B.; Bu, L.J.; Lu, G.H. Enhanced Multiwavelength Response of Flexible Synaptic Transistors for Human Sunburned Skin Simulation and Neuromorphic Computation. Adv. Mater. 2023, 35, 2303699. [Google Scholar] [CrossRef]
- Li, H.F.; Geng, S.Y.Y.; Liu, T.; Cao, M.H.; Su, J. Synaptic and Gradual Conductance Switching Behaviors in CeO2/Nb-SrTiO3 Heterojunction Memristors for Electrocardiogram Signal Recognition. ACS Appl. Mater. Interfaces 2023, 15, 5456. [Google Scholar] [CrossRef]
- Shen, G.Y.; Zhuge, C.Y.; Jiang, J.D.; Fu, Y.J.; Zheng, Y.M.; Qin, Z.Y.; Wang, Q.; He, D.Y. Defective Engineering Tuning the Analog Switching Linearity and Symmetry of Two-Terminal Artificial Synapse for Neuromorphic Systems. Adv. Funct. Mater. 2024, 34, 2309054. [Google Scholar] [CrossRef]
- Yu, F.; Cai, J.C.; Zhu, L.Q.; Sheikhi, M.; Zeng, Y.H.; Guo, W.; Ren, Z.Y.; Xiao, H.; Ye, J.C.; Lin, C.-H.; et al. Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities. ACS Appl. Mater. Interfaces 2020, 12, 26258. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Chen, S.; Li, R.; Lou, Z.; Han, W.; Jiang, K.; Qu, F.Y.; Shen, G.Z. An artificial olfactory system with sensing, memory and self-protection capabilities. Nano Energy 2021, 86, 106078. [Google Scholar] [CrossRef]
- Ke, S.; Wang, F.Y.; Fu, C.Y.; Mao, H.W.; Zhu, Y.X.; Wang, X.J.; Wan, C.J.; Wan, Q. Artificial fear neural circuit based on noise triboelectric nanogenerator and photoelectronic neuromorphic transistor. Appl. Phys. Lett. 2023, 123, 123501. [Google Scholar] [CrossRef]
- Ren, S.H.; Wang, K.Y.; Jia, X.T.; Wang, J.Y.; Xu, J.K.; Yang, B.; Tian, Z.W.; Xia, R.X.; Yu, D.; Jia, Y.F.; et al. Fibrous MXene Synapse-Based Biomimetic Tactile Nervous System for Multimodal Perception and Memory. Small 2024, 20, 2400165. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.Y.; Wang, W.S.; Huang, X.; Gong, B.C.; Di, J.K.; Huang, Y.J.; Zhu, L.Q. Sound frequency sensitive triboelectric nanogenerator for multi-functional auditory perceptual system applications. Nano Res. 2025, 18, 94907378. [Google Scholar] [CrossRef]
- Noh, M.; Ju, D.; Cho, S.; Kim, S. The Enhanced Performance of Neuromorphic Computing Hardware in an ITO/ZnO/HfOx/W Bilayer-Structured Memory Device. Nanomaterials 2023, 13, 2856. [Google Scholar] [CrossRef]
- Pashin, D.S.; Bastrakova, M.V.; Rybin, D.A.; Soloviev, I.I.; Klenov, N.V.; Schegolev, A.E. Optimisation Challenge for a Superconducting Adiabatic Neural Network That Implements XOR and OR Boolean Functions. Nanomaterials 2024, 14, 854. [Google Scholar] [CrossRef]
- Zhu, L.; Lin, J.C.; Zhu, Y.X.; Wu, J.; Wan, X.; Sun, H.B.; Yu, Z.H.; Xu, Y.; Tan, C. Flexible Organic Electrochemical Transistors for Energy-Efficient Neuromorphic Computing. Nanomaterials 2024, 14, 1195. [Google Scholar] [CrossRef]
- Avilov, V.I.; Tominov, R.V.; Vakulov, Z.E.; Rodriguez, D.J.; Polupanov, N.V.; Smirnov, V.A. Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties. Nanomaterials 2025, 15, 75. [Google Scholar] [CrossRef]
- Oh, S.; Yoon, R.; Min, K.-S. Defect-Tolerant Memristor Crossbar Circuits for Local Learning Neural Networks. Nanomaterials 2025, 15, 213. [Google Scholar] [CrossRef]
- Cho, S.-M.; Lee, J.; Jo, H.; Yun, D.; Moon, J.; Min, K.-S. Binary-Weighted Neural Networks Using FeRAM Array for Low-Power AI Computing. Nanomaterials 2025, 15, 1166. [Google Scholar] [CrossRef]
- Feng, C.Y.; Wu, W.W.; Liu, H.D.; Wang, J.K.; Wan, H.Z.; Ma, G.K.; Wang, H. Emerging Opportunities for 2D Materials in Neuromorphic Computing. Nanomaterials 2023, 13, 2720. [Google Scholar] [CrossRef]
- Mohanan, K.U. Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations. Nanomaterials 2024, 14, 527. [Google Scholar] [CrossRef]
- He, Y.L.; Zhu, Y.X.; Wan, Q. Oxide Ionic Neuro-Transistors for Bio-inspired Computing. Nanomaterials 2024, 14, 584. [Google Scholar] [CrossRef]
- Li, P.C.; Wang, K.S.; Jiang, S.S.; He, G.; Zhang, H.N.; Cheng, S.; Li, Q.X.; Zhu, Y.X.; Can Fu, C.; Wei, H.H.; et al. Optical Bio-Inspired Synaptic Devices. Nanomaterials 2024, 14, 1573. [Google Scholar] [CrossRef]
- Wang, W.S.; Zhu, L.Q. Electrolyte Gated Transistors for Brain Inspired Neuromorphic Computing and Perception Applications. Nanomaterials 2025, 15, 348. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhu, Y.X.; Zhou, Z.L.; Chen, X.; Jia, X.J. Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing. Nanomaterials 2025, 15, 1130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wan, Q. Neuromorphic Devices: Materials, Structures and Bionic Applications. Nanomaterials 2025, 15, 1299. https://doi.org/10.3390/nano15171299
Zhu L, Wan Q. Neuromorphic Devices: Materials, Structures and Bionic Applications. Nanomaterials. 2025; 15(17):1299. https://doi.org/10.3390/nano15171299
Chicago/Turabian StyleZhu, Liqiang, and Qing Wan. 2025. "Neuromorphic Devices: Materials, Structures and Bionic Applications" Nanomaterials 15, no. 17: 1299. https://doi.org/10.3390/nano15171299
APA StyleZhu, L., & Wan, Q. (2025). Neuromorphic Devices: Materials, Structures and Bionic Applications. Nanomaterials, 15(17), 1299. https://doi.org/10.3390/nano15171299