Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fabrication of SERS-Active Anisotropic Arrays of Silver Nanostructures on the QCM Sensor
3.1.1. Electrodeposition on ITO Surfaces
3.1.2. Electrodeposition on QCM Sensors
3.1.3. SERS Characterization of Electrodeposited Plasmonic Nanostructures
3.2. Formation of Self-Assembled Monolayers Containing the Receptor for FKBP12 on QCM Supports
3.2.1. QCM Monitoring of the Formation of Self-Assembled Monolayers Containing GPS-SH1
3.2.2. Raman Identification of GPS-SH1 on SAM-Coated QCM Supports
3.3. FKBP12 on QCM Functionalized with Dendritic Nanostructures
QCM Detection of FKBP12
3.4. SERS Detection of FKBP12
3.4.1. SERS Characterization of Free and ELTEN378-Bound FKBP12
3.4.2. SERS Analysis of FKBP12 Protein Adsorbed on the QCM Functionalized with Nanodendrites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordeaux, J.; Welsh, A.; Agarwal, S.; Killiam, E.; Baquero, M.; Hanna, J.; Anagnostou, V.; Rimm, D. Antibody Validation. Biotechniques 2010, 48, 197–209. [Google Scholar] [CrossRef]
- Caminati, G.; Procacci, P. Mounting Evidence of FKBP12 Implication in Neurodegeneration. Neural Regen. Res. 2020, 15, 2195. [Google Scholar] [CrossRef]
- Jia, M.; Li, S.; Zang, L.; Lu, X.; Zhang, H. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. Nanomaterials 2018, 8, 730. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, N.; Almutairi, M.; Alodhayb, A.N. A Review of Quartz Crystal Microbalance for Chemical and Biological Sensing Applications. Sens. Imaging 2023, 24, 10. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K. Physiological Function of FKBP12, a Primary Target of Rapamycin/FK506: A Newly Identified Role in Transcription of Ribosomal Protein Genes in Yeast. Curr. Genet. 2021, 67, 383–388. [Google Scholar] [CrossRef]
- Dittel, B.N.; Visintin, I. FK506 Binding Protein 12/12.6 Inhibits T Cell Receptor Signaling and Acts as a Positive Feedback Regulator of NFATc1 Transcriptional Activity in T Cells. J. Immunol. 2019, 203, 584–595. [Google Scholar]
- Narayan, V.; Sharma, S.; Chaudhary, P.M. Recent Advances in the Understanding and Therapeutic Management of Autoimmune Diseases: Focus on Immunophilins. Expert. Rev. Clin. Immunol. 2019, 15, 731–744. [Google Scholar]
- Wu, Z.; Xu, Q.; Qiu, X.; Xu, L.; Jiao, Z.; Zhang, M.; Zhong, M. FKBP1A Rs6041749 Polymorphism Is Associated with Allograft Function in Renal Transplant Patients. Eur. J. Clin. Pharmacol. 2019, 75, 33–40. [Google Scholar] [CrossRef]
- Tong, M.; Jiang, Y. FK506-Binding Proteins and Their Diverse Functions. CMP 2015, 9, 48–65. [Google Scholar] [CrossRef]
- Nakashima, S.; Matsuda, H.; Yoshida, M.; Fujiwara, K. Design and Synthesis of New Immunophilin Ligands Having Neuroprotective Effects. Bioorganic Med. Chem. 1999, 7, 923–933. [Google Scholar]
- Lan, A.; Chen, J.; Zhao, Y.; Chai, Z.; Hu, Y. mTOR Signaling in Parkinson’s Disease. Neuromol. Med. 2017, 19, 1–10. [Google Scholar] [CrossRef]
- Nakayama, K.; Kanzaki, A.; Terada, K.; Mutoh, M.; Ogawa, K.; Sugiyama, T.; Kawamura, S. Immunohistochemical Expression of FK506-Binding Protein 12 in Primary Colorectal Cancer and Metastatic Lymph Node in Relation to Tumor Stage, Proliferative Activity, and P53 Expression. Cancer Lett. 2001, 167, 181–186. [Google Scholar]
- Schreiber, K.H.; Ortiz, D.; Academia, E.C.; Anies, A.C.; Liao, C.-Y.; Kennedy, B.K. Rapamycin-Mediated mTORC2 Inhibition Is Determined by the Relative Expression of FK506-Binding Proteins. Aging Cell 2015, 14, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Pace, A.D.; Sorrentino, A.; Bisogni, R.; Sivero, L.; Romano, M.F. FK506 Binding Proteins as Targets in Anticancer Therapy. Anti-Cancer Agents Med. Chem. 2010, 10, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, H.; Pi, S.; Tan, H.; Huang, B.; Chen, Y. The Prognostic and Immunological Role of FKBP1A in an Integrated Muti-Omics Cancers Analysis, Especially Lung Cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 16589–16608. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Dabhi, A.M.; Dmello, C.; Seervi, M.; Sneha, K.M.; Agrawal, P.; Sahani, M.H.; Kanojia, D. FKBP1A Upregulation Correlates with Poor Prognosis and Increased Metastatic Potential of HNSCC. Cell Biol. Int. 2022, 46, 443–453. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Y.; Duan, Q.; Zhang, J.; Shao, D.; Cao, X.; Gao, Y.; Wang, S.; Li, J.; Jones, O.D.; et al. The Prognostic Significance of FKBP1A and Its Related Immune Infiltration in Liver Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 12797. [Google Scholar] [CrossRef]
- Liu, Z.-D.; Wang, S.-Q.; Li, S.; He, J.; Wang, S.-H.; Cai, H.-Q.; Wan, J.-H. Identification of FKBP10 Prognostic Value in Lung Adenocarcinoma Patients with Surgical Resection of Brain Metastases: A Retrospective Single-Institution Cohort Study. Clinics 2023, 78, 100212. [Google Scholar] [CrossRef]
- Wang, C.-C.; Shen, W.-J.; Anuraga, G.; Hsieh, Y.-H.; Khoa Ta, H.D.; Xuan, D.T.M.; Shen, C.-F.; Wang, C.-Y.; Wang, W.-J. Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma. J. Pers. Med. 2022, 13, 49. [Google Scholar] [CrossRef]
- Liu, T.; Xiong, J.; Yi, S.; Zhang, H.; Zhou, S.; Gu, L.; Zhou, M. FKBP12 Enhances Sensitivity to Chemotherapy-Induced Cancer Cell Apoptosis by Inhibiting MDM2. Oncogene 2017, 36, 1678–1686. [Google Scholar] [CrossRef]
- Luo, R.; Su, L.-Y.; Li, G.; Yang, J.; Liu, Q.; Yang, L.-X.; Zhang, D.-F.; Zhou, H.; Xu, M.; Fan, Y.; et al. Activation of PPARA-Mediated Autophagy Reduces Alzheimer Disease-like Pathology and Cognitive Decline in a Murine Model. Autophagy 2020, 16, 52–69. [Google Scholar] [CrossRef]
- Hsieh, Y.L.; Cai, J.; Li, Y.T.; Henion, J.D.; Ganem, B. Detection of Noncovalent FKBP-FK506 and FKBP-Rapamycin Complexes by Capillary Electrophoresis-Mass Spectrometry and Capillary Electrophoresis-Tandem Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 1995, 6, 85–90. [Google Scholar] [CrossRef]
- Caminati, G.; Procacci, P.; Menichetti, S.; Martina, M.R.; Marsili, L. A Compound for the Determination of the Protein FKBP12 and a Sensor Unit Comprising It. Patent WO 2021/124269 A1, 24 June 2021. [Google Scholar]
- Tozzetti, M.; Martina, M.R.; Lucchesi, G.; Vasa, K.; Ishaq, A.; Marsili, L.; Procacci, P.; Menichetti, S.; Caminati, G. Ultrasensitive Detection of FKBP12 Using a Synthetic Receptor-Functionalized QCM Nanoplatform. Adv. Sens. Mater. 2025, e00053 early view. [Google Scholar] [CrossRef]
- Hayashi, T.; Latag, G.V. Self-Assembled Monolayers as Platforms for Nanobiotechnology and Biointerface Research: Fabrication, Analysis, Mechanisms, and Design. ACS Appl. Nano Mater. 2025, 8, 8570–8587. [Google Scholar] [CrossRef]
- Bartolini, C.; Tozzetti, M.; Menichetti, S.; Caminati, G. Silver Nanostructures for Determination of FKBP12 Protein. Eng. Proc. 2024, 73, 9. [Google Scholar] [CrossRef]
- Hou, L.; Xu, X.; Tian, F.; Xu, Y. Collaborative Integration of SERS and QCM Sensing for Label-Free Multi-Component Gas Detection. Talanta 2025, 286, 127509. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-Enhanced Raman Spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87. [Google Scholar] [CrossRef]
- Becucci, M.; Bracciali, M.; Ghini, G.; Lofrumento, C.; Pietraperzia, G.; Ricci, M.; Tognaccini, L.; Trigari, S.; Gellini, C.; Feis, A. Silver Nanowires as Infrared-Active Materials for Surface-Enhanced Raman Scattering. Nanoscale 2018, 10, 9329–9337. [Google Scholar] [CrossRef]
- Abid, J.P.; Wark, A.W.; Brevet, P.F.; Girault, H.H. Preparation of Silver Nanoparticles in Solution from a Silver Salt by Laser Irradiation. Chem. Commun. 2002, 7, 792–793. [Google Scholar] [CrossRef]
- Park, Y.-K.; Yoo, S.-H.; Park, S. Assembly of Highly Ordered Nanoparticle Monolayers at a Water/Hexane Interface. Langmuir 2007, 23, 10505–10510. [Google Scholar] [CrossRef]
- Banchelli, M.; Tiribilli, B.; de Angelis, M.; Pini, R.; Caminati, G.; Matteini, P. Controlled Veiling of Silver Nanocubes with Graphene Oxide for Improved Surface-Enhanced Raman Scattering Detection. ACS Appl. Mater. Interfaces 2016, 8, 2628–2634. [Google Scholar] [CrossRef] [PubMed]
- Banchelli, M.; Tiribilli, B.; Pini, R.; Dei, L.; Matteini, P.; Caminati, G. Controlled Graphene Oxide Assembly on Silver Nanocube Monolayers for SERS Detection: Dependence on Nanocube Packing Procedure. Beilstein J. Nanotechnol. 2016, 7, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Tramonti, V.; Lofrumento, C.; Martina, M.R.; Lucchesi, G.; Caminati, G. Graphene Oxide/Silver Nanoparticles Platforms for the Detection and Discrimination of Native and Fibrillar Lysozyme: A Combined QCM and SERS Approach. Nanomaterials 2022, 12, 600. [Google Scholar] [CrossRef] [PubMed]
- Kubelka, P.; Munk, F. An Article on Optics of Paint Layers. J. Phys. 1931, 12, 593–601. [Google Scholar]
- Höök, F.; Rodahl, M.; Brzezinski, P.; Kasemo, B. Energy Dissipation Kinetics for Protein and Antibody−Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance. Langmuir 1998, 14, 729–734. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Q.; Pan, W.; Hu, J.; Yao, Y. Assessing the Mass Sensitivity for Different Electrode Materials Commonly Used in Quartz Crystal Microbalances (QCMs). Sensors 2019, 19, 3968. [Google Scholar] [CrossRef]
- Polavarapu, L.; Pérez-Juste, J.; Xu, Q.-H.; Liz-Marzán, L.M. Optical Sensing of Biological, Chemical and Ionic Species through Aggregation of Plasmonic Nanoparticles. J. Mater. Chem. C 2014, 2, 7460. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Khanadeev, V.A.; Panfilova, E.V.; Bratashov, D.N.; Khlebtsov, N.G. Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides. ACS Appl. Mater. Interfaces 2015, 7, 6518–6529. [Google Scholar] [CrossRef]
- Hossain, M.K.; Cho, H.-Y.; Kim, K.-J.; Choi, J.-W. Silver Nanostar Patterned Substrate for Label-Free Characterization of Breast Cancer Cells Based on Surface-Enhanced Raman Spectroscopy. Sci. Adv. Mater. 2014, 6, 2491–2495. [Google Scholar] [CrossRef]
- Sharma, D.K.; Ott, A.; O’Mullane, A.P.; Bhargava, S.K. The Facile Formation of Silver Dendritic Structures in the Absence of Surfactants and Their Electrochemical and SERS Properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 386, 98–106. [Google Scholar] [CrossRef]
- Peklar, R.; Mikac, U.; Serša, I. Simulation of Dendrite Growth with a Diffusion-Limited Aggregation Model Validated by MRI of a Lithium Symmetric Cell during Charging. Batteries 2024, 10, 352. [Google Scholar] [CrossRef]
- Marmur, A. Soft Contact: Measurement and Interpretation of Contact Angles. Soft Matter 2006, 2, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, S.; Huang, S.; Pan, W. Superhydrophobicity and Surface Enhanced Raman Scattering Activity of Dendritic Silver Layers. Thin Solid Film. 2010, 519, 1314–1318. [Google Scholar] [CrossRef]
- Guo, F.; Su, X.; Hou, G.; Li, P. Superhydrophobic Silver Surface with Dendrites Structure on Steel Substrate by a Facile Electroless Galvanic Deposition Process. Appl. Surf. Sci. 2012, 258, 4906–4910. [Google Scholar] [CrossRef]
- Mandke, M.V.; Han, S.-H.; Pathan, H.M. Growth of Silver Dendritic Nanostructures via Electrochemical Route. CrystEngComm 2012, 14, 86–89. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 Nm Using the Same Protocol and Their Antibacterial Efficacy. RSC Adv. 2013, 4, 3974–3983. [Google Scholar] [CrossRef]
- He, X.N.; Gao, Y.; Mahjouri-Samani, M.; Black, P.N.; Allen, J.; Mitchell, M.; Xiong, W.; Zhou, Y.S.; Jiang, L.; Lu, Y.F. Surface-Enhanced Raman Spectroscopy Using Gold-Coated Horizontally Aligned Carbon Nanotubes. Nanotechnology 2012, 23, 205702. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Yamamoto, S.; Watarai, H. Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface. Langmuir 2006, 22, 6562–6569. [Google Scholar] [CrossRef]
- VanDer Kamp, K.A.; Qiang, D.; Aburub, A.; Wurster, D.E. Modified Langmuir-like Model for Modeling the Adsorption from Aqueous Solutions by Activated Carbons. Langmuir 2005, 21, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Martina, M.R.; Tenori, E.; Bizzarri, M.; Menichetti, S.; Caminati, G.; Procacci, P. The Precise Chemical–Physical Nature of the Pharmacore in FK506 Binding Protein Inhibition: ElteX, a New Class of Nanomolar FKBP12 Ligands. J. Med. Chem. 2013, 56, 1041–1051. [Google Scholar] [CrossRef]
- Nerattini, F.; Chelli, R.; Procacci, P. II. Dissociation Free Energies in Drug–Receptor Systems via Nonequilibrium Alchemical Simulations: Application to the FK506-Related Immunophilin Ligands. Phys. Chem. Chem. Phys. 2016, 18, 15005–15018. [Google Scholar] [CrossRef]
QCM Support | Δm/Aa (ng/cm2) | Saturation Area (Å2/Molecules) | Thickness (nm) | ΔD (10−6) |
---|---|---|---|---|
Au Flat | 323 | 31 | 19 | 1 |
Ag Flat | 463 | 21 | 17 | 2 |
AgNDs@Au | 1037 | 10 | - | 4 |
SAM Composition | Δm/A experimental (ng/cm2) | Δm/A theoretical (ng/cm2) | K1d (nM) | K2d (nM) | ||
---|---|---|---|---|---|---|
First step | Second step | First step | Second step | First step | Second step | |
GPS-SH1/C12-SH 1:6 | 222.0 | 510.3 | 228.2 | 520.8 | 0.4 ± 0.1 | 119.1 ± 27.4 |
GPS-SH1/PEG-SH 1:6 | 116.1 | 269.9 | 115.8 | 268.6 | 0.9 ± 0.3 | 190.7 ± 253.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolini, C.; Tozzetti, M.; Gellini, C.; Ricci, M.; Menichetti, S.; Procacci, P.; Caminati, G. Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting. Nanomaterials 2025, 15, 1230. https://doi.org/10.3390/nano15161230
Bartolini C, Tozzetti M, Gellini C, Ricci M, Menichetti S, Procacci P, Caminati G. Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting. Nanomaterials. 2025; 15(16):1230. https://doi.org/10.3390/nano15161230
Chicago/Turabian StyleBartolini, Cosimo, Martina Tozzetti, Cristina Gellini, Marilena Ricci, Stefano Menichetti, Piero Procacci, and Gabriella Caminati. 2025. "Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting" Nanomaterials 15, no. 16: 1230. https://doi.org/10.3390/nano15161230
APA StyleBartolini, C., Tozzetti, M., Gellini, C., Ricci, M., Menichetti, S., Procacci, P., & Caminati, G. (2025). Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting. Nanomaterials, 15(16), 1230. https://doi.org/10.3390/nano15161230