Nanoparticle Uptake and Crossing by Human In Vitro Models of Intestinal Barriers: A Scoping Review
Abstract
1. Introduction
2. Methods
- Developing a search strategy
- Determining the inclusion and exclusion criteria
- Identifying the relevant studies through database search
- Screening and paper selection
- Extraction of the data
- Summarizing and reporting the results
2.1. Search Strategy
2.2. Parameters and Endpoints Considered for Barriers Models
3. Results
3.1. Inorganic Nanomaterial
3.1.1. Titanium Dioxide
3.1.2. Zinc Oxide
3.1.3. Silicon Dioxide
3.1.4. Silver
3.1.5. Aluminum
3.1.6. Cerium Dioxide
3.1.7. Iron
3.1.8. Copper
3.1.9. Gold
3.2. Micro- and Nanoplastics
3.3. Nanocelluloses
4. Discussion
4.1. Overview of the NMS Effects on Intestinal Barrier Models
4.2. Data Reuse
5. Conclusions
- Limited characterization and standardization of the co-culture models, particularly for which concern M cells identification
- Lack of comparison between mono-, bi-, and tri-culture models in respect to NM effects
- Some systematic studies on NM translocation and uptake
- Some data on NMs exposure longer than 24 h and on NMs’ repeated exposure
- Limited studies conducted applying dose range within the human daily intake
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Apical |
BL | Basolateral |
BNC | Bacterial Nanocellulose |
CLSM | Fluorescence Confocal Microscopy |
CNC | Cellulose Nanocrystals |
DLS | Dynamic Light Scattering |
DMEM | Dulbecco’s Modified Eagle Medium |
EC | European Commission |
EC50 | Effective Concentration 50 |
EFSA | European Food Safety Authority |
EMA | European Medicines Agency |
EU | European Union |
FAE | Follicle-Associated Epithelial |
FAIR | Findable, Accessible, Interoperable, and Reusable |
FBS | Fetal Bovine Serum |
FDA | Food and Drug Administration |
FITC-Dextran | Fluorescein Isothiocyanate-Labelled Dextran |
GIT | Gastrointestinal Tract |
HTS | High-Throughput Screening |
IAP | Intestinal Alkaline Phosphatase |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
ISO | International Organization for Standardization |
LDH | Lactate Dehydrogenase |
LY | Lucifer Yellow |
M-cells | Microfold Cells |
MCC | Microcrystalline Cellulose |
MF | Melamine Formaldehyde Resin |
MNPs | Micro-Nanoplastics |
MUA | Mercaptoundecanoic Acid |
NAMs | New Approach Methodologies |
NC | Nanocellulose |
NFC | Nanofibrillated Cellulose |
NMs | Nanomaterials |
NPs | Nanoparticles |
OECD | Organisation for Economic Co-operation and Development |
OHT | OECD Harmonized Templates |
PAA | Poly Acrylic Acid |
Papp | Apparent Permeability Coefficient |
PE | Polyethylene |
PLA | Polylactic Acid |
PMA | Polymethacrylate |
PMMA | Polymethylmethacrylate |
PS | Polystyrene |
PVC | Polyvinyl Chloride |
SAS | Synthetic Amorphous Silica |
SEM | Scanning Electron Microscopy |
sp-ICP-MS | Single-Particle Inductively Coupled Plasma Mass Spectrometry |
TEER | Transepithelial Electrical Resistance |
TEM | Transmission Electron Microscopy |
WGA | Wheat Germ Agglutinin |
ZO-1 | Zonula Occludens-1 |
References
- Rasmussen, K.; Sintes, J.R.; Rauscher, H. How nanoparticles are counted in global regulatory nanomaterial definitions. Nat. Nanotechnol. 2024, 19, 132–138. [Google Scholar] [CrossRef]
- Catita, J.A.M. Challenges in Nanomaterial Characterization—From Definition to Analysis Nanotoxicology in Safety Assessment of Nanomaterials. Adv. Exp. Med. Biol. 2022, 1357, 3–17. [Google Scholar] [CrossRef]
- Stucki, A.O.; Barton-Maclaren, T.S.; Bhuller, Y.; Henriquez, J.E.; Henry, T.R.; Hirn, C.; Miller-Holt, J.; Nagy, E.G.; Perron, M.M.; Ratzlaff, D.E.; et al. Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Front. Toxicol. 2022, 4, 964553. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.M.; Bremer-Hoffmann, S.; Cheyns, K.; Cubadda, F.; Dumit, V.I.; Escher, S.E.; Fessard, V.; Gutleb, A.C.; Léger, T.; Liu, Y.; et al. Review of New Approach Methodologies for Application in Risk Assessment of Nanoparticles in the Food and Feed Sector: Status and Challenges. EFSA Support. Publ. 2024, 21, 9. [Google Scholar] [CrossRef]
- ECHA. Report on the European Chemicals Agency’s. In Proceedings of the New Approach Methodologies Workshop: Towards an Animal Free Regulatory System for Industrial Chemicals, Helsinki, Finland, 31 May–1 June 2023. [Google Scholar]
- More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambré, C.; Machera, K.; et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021, 19, e06768. [Google Scholar] [CrossRef] [PubMed]
- Vincentini, O.; Prota, V.; Cecchetti, S.; Bertuccini, L.; Tinari, A.; Iosi, F.; De Angelis, I. Towards the Standardization of Intestinal In Vitro Advanced Barrier Model for Nanoparticles Uptake and Crossing: The SiO2 Case Study. Cells 2022, 11, 3357. [Google Scholar] [CrossRef]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef]
- EMA. ICH M9 Guideline on Biopharmaceutics Classification System-Based Biowaivers. EMA/CHMP/ICH/493213/2018. 2020. Available online: http://www.ema.europa.eu/contact (accessed on 12 June 2025).
- FDA. ICH, M9 Biopharmaceutics Classification System-Based Biowaivers Guidance for Industry. May 2021. Available online: https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances (accessed on 12 June 2025).
- OECD. Guidance Document on the Characterisation, Validation and Reporting of Physiologically Based Kinetic (PBK) Models for Regulatory Purposes. Series on Testing and Assessment No. 331. 2021. Available online: http://www.oecd.org/chemicalsafety/ (accessed on 12 June 2025).
- Araújo, F.; Sarmento, B. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int. J. Pharm. 2013, 458, 128–134. [Google Scholar] [CrossRef]
- Schimpel, C.; Teubl, B.; Absenger, M.; Meindl, C.; Fröhlich, E.; Leitinger, G.; Zimmer, A.; Roblegg, E. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol. Pharm. 2014, 11, 808–818. [Google Scholar] [CrossRef]
- ISO. Nanotechnologies—Considerations for Performing Toxicokinetic Studies with Nanomaterials. TC22019. 2019. Available online: https://www.iso.org/standard/72381.html (accessed on 13 May 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- McCracken, C.; Dutta, P.K.; Waldman, W.J. Critical assessment of toxicological effects of ingested nanoparticles. Environ. Sci. Nano 2016, 3, 256–282. [Google Scholar] [CrossRef]
- EFS Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; et al. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J. 2021, 19, e06585. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2022/63. COMMISSION REGULATION (EU) 2022/63 of 14 January 2022 Amending Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Food Additive Titanium Dioxide (E 171). 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0063 (accessed on 12 June 2025).
- Vieira, A.; Gramacho, A.; Rolo, D.; Vital, N.; Silva, M.J.; Louro, H. Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. Adv. Exp. Med. Biol. 2022, 1357, 225–257. [Google Scholar] [CrossRef] [PubMed]
- Brun, E.; Barreau, F.; Veronesi, G.; Fayard, B.; Sorieul, S.; Chanéac, C.; Carapito, C.; Rabilloud, T.; Mabondzo, A.; Herlin-Boime, N.; et al. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol. 2014, 11, 13. [Google Scholar] [CrossRef]
- Gitrowski, C.; Al-Jubory, A.R.; Handy, R.D. Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells. Toxicol. Lett. 2014, 226, 264–276. [Google Scholar] [CrossRef]
- MacNicoll, A.; Kelly, M.; Aksoy, H.; Kramer, E.; Bouwmeester, H.; Chaudhry, Q. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake. J. Nanopart. Res. 2015, 17, 66. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; Vila, L.; Cortés, C.; Hernández, A.; Marcos, R. Effects of differently shaped TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier. Part Fibre Toxicol. 2018, 15, 33. [Google Scholar] [CrossRef]
- Vila, L.; García-Rodríguez, A.; Marcos, R.; Hernández, A. Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. J. Appl. Toxicol. 2018, 38, 1195–1205. [Google Scholar] [CrossRef]
- Cao, W.; Liu, M.; Wang, C.; Jing, G.; Cao, Y. Influences of repeated exposure to low levels of TiO2 nanoparticles on Kruppel-like factors in 3D Caco-2 spheroids and mouse intestines. J. Appl. Toxicol. 2022, 43, 706–718. [Google Scholar] [CrossRef]
- Rolo, D.; Pereira, J.F.S.; Gonçalves, L.; Bettencourt, A.; Jordan, P.; Silva, M.J.; Matos, P.; Louro, H. Assessing the impact of TiO2 nanomaterials on intestinal cells: New evidence for epithelial translocation and potential pro-inflammatory effects. Toxicology 2025, 511, 154066. [Google Scholar] [CrossRef]
- Maares, M.; Keil, C.; Koza, J.; Straubing, S.; Schwerdtle, T.; Haase, H. In Vitro Studies on Zinc Binding and Buffering by Intestinal Mucins. Int. J. Mol. Sci. 2018, 19, 2662. [Google Scholar] [CrossRef]
- Mittag, A.; Singer, A.; Hoera, C.; Westermann, M.; Kämpfe, A.; Glei, M. Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Part Fibre Toxicol. 2022, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Sohal, I.S.; DeLoid, G.M.; O’FAllon, K.S.; Gaines, P.; Demokritou, P.; Bello, D. Effects of ingested food-grade titanium dioxide, silicon dioxide, iron (III) oxide and zinc oxide nanoparticles on an in vitro model of intestinal epithelium: Comparison between monoculture vs. a mucus-secreting coculture model. NanoImpact 2020, 17, 100209. [Google Scholar] [CrossRef]
- Moreno-Olivas, F.; Tako, E.; Mahler, G.J. ZnO nanoparticles affect nutrient transport in an in vitro model of the small intestine. Food Chem. Toxicol. 2019, 124, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.-B.; Yu, J.; Choi, S.-J. Interaction between ZnO Nanoparticles and Albumin and Its Effect on Cytotoxicity, Cellular Uptake, Intestinal Transport, Toxicokinetics, and Acute Oral Toxicity. Nanomaterials 2021, 11, 2922. [Google Scholar] [CrossRef]
- Mittag, A.; Owesny, P.; Hoera, C.; Kampfe, A.; Glei, M. Effects of Zinc Oxide Nanoparticles on Model Systems of the Intestinal Barrier. Toxics 2022, 10, 49. [Google Scholar] [CrossRef]
- Lee, H.-I.; Kwon, R.-Y.; Choi, S.-J. Food Additive Solvents Increase the Dispersion, Solubility, and Cytotoxicity of ZnO Nanoparticles. Nanomaterials 2023, 13, 2573. [Google Scholar] [CrossRef]
- Mortensen, N.P.; Moreno Caffaro, M.; Davis, K.; Aravamudhan, S.; Sumner, S.J.; Fennell, T.R. Investigation of twenty metal, metal oxide, and metal sulfide nanoparticles’ impact on differentiated Caco-2 monolayer integrity. NanoImpact 2020, 17, 100212. [Google Scholar] [CrossRef]
- Brand, W.; van Kesteren, P.C.E.; Peters, R.J.B.; Oomen, A.G. Issues currently complicating the risk assessment of synthetic amorphous silica (SAS) nanoparticles after oral exposure. Nanotoxicology 2021, 15, 905–933. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, D.; Feng, J.; You, H.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv. Transl. Res. 2023, 13, 2213–2238. [Google Scholar] [CrossRef]
- Bergen, J.; Iriarte-Mesa, C.; Rieger, J.; Crudo, F.; Marko, D.; Kleitz, F.; Berthiller, F.; del Favero, G. Integrating physiologically-inspired nanoparticles with intestinal cell co-culture for enhanced activity profiling of food constituents and contaminants in vitro. Food Res. Int. 2025, 209, 116206. [Google Scholar] [CrossRef] [PubMed]
- Strugari, A.F.; Stan, M.S.; Gharbia, S.; Hermenean, A.; Dinischiotu, A. Characterization of nanoparticle intestinal transport using an in vitro co-culture model. Nanomaterials 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Bramini, M.; Hristov, D.R.; Wan, S.; Salvati, A.; Åberg, C.; Dawson, K.A. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers. Beilstein J. Nanotechnol. 2017, 8, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.; Lim, H.K.; Li, J.J.E.; Hughes, C.O.; Yeo, C.W.S.; Rakshit, M.; Leavesley, D.I.; Lim, M.J.S.; Tan, J.C.W.; Tan, L.Y.; et al. Assessing nanotoxicity of food-relevant particles: A comparative analysis of cellular responses in cell monolayers versus 3D gut epithelial cultures. Food Chem. Food Chem. Toxicol. 2024, 193, 115055. [Google Scholar] [CrossRef]
- Cornu, R.; Chretien, C.; Pellequer, Y.; Martin, H.; Beduneau, A. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Arch. Toxicol. 2020, 94, 1191–1202. [Google Scholar] [CrossRef]
- Zaiter, T.; Cornu, R.; Millot, N.; Herbst, M.; Pellequer, Y.; Moarbess, G.; Martin, H.; Diab-Assaf, M.; Béduneau, A. Size effect and mucus role on the intestinal toxicity of the E551 food additive and engineered silica nanoparticles. Nanotoxicology 2022, 16, 165–182. [Google Scholar] [CrossRef]
- Hempt, C.; Hirsch, C.; Hannig, Y.; Rippl, A.; Wick, P.; Buerki-Thurnherr, T. Investigating the effects of differently produced synthetic amorphous silica (E551) on the integrity and functionality of the human intestinal barrier using an advanced in vitro co-culture model. Arch. Toxicol. 2021, 95, 837–852. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; Vila, L.; Cortés, C.; Hernández, A.; Marcos, R. Exploring the usefulness of the complex in vitro intestinal epithelial model Caco-2/HT29/Raji-B in nanotoxicology. Food Chem. Toxicol. 2018, 113, 162–170. [Google Scholar] [CrossRef]
- Younes, M.; .Aquilina, G.; Castle, L.; Degen, G.; Engel, K.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Husøy, T.; et al. Re-evaluation of silicon dioxide (E551) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as a food additive for uses in foods for all population groups. EFSA J. 2024, 22, e8880. [Google Scholar] [CrossRef]
- Ding, R.; Yang, P.; Yang, Y.; Yang, Z.; Luo, L.; Li, H.; Wang, Q. Characterisation of silver release from nanoparticle-treated baby products. Food Addit. Contam. Part A 2018, 35, 2052–2061. [Google Scholar] [CrossRef]
- Weigel, S.; Peters, R.; Loeschner, K.; Grombe, R.; Linsinger, T.P.J. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS). Anal. Bioanal. Chem. 2017, 409, 4839–4848. [Google Scholar] [CrossRef]
- Van Der Zande, M.; Undas, A.K.; Kramer, E.; Monopoli, M.P.; Peters, R.J.; Garry, D.; Antunes Fernandes, E.C.; Hendriksen, P.J.; Marvin, H.J.P.; Peijnenburg, A.A.; et al. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology 2016, 10, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, D.; Meyer, T.; Böhmert, L.; Juling, S.; Fahrenson, C.; Selve, S.; Thünemann, A.; Meijer, J.; Estrela-Lopis, I.; Braeuning, A.; et al. Dosimetric Quantification of Coating-Related Uptake of Silver Nanoparticles. Langmuir 2017, 33, 13087–13097. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhaliq, A.; Van Der Zande, M.; Undas, A.K.; Peters, R.J.B.; Bouwmeester, H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology 2020, 14, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, A.A.; Urbán, P.; La Spina, R.; Jiménez, I.O.; Kanase, N.; Stone, V.; Kinsner-Ovaskainen, A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol. Vitr. 2020, 63, 104738. [Google Scholar] [CrossRef]
- Georgantzopoulou, A.; Serchi, T.; Cambier, S.; Leclercq, C.C.; Renaut, J.; Shao, J.; Kruszewski, M.; Lentzen, E.; Grysan, P.; Eswara, S.; et al. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol. 2015, 13, 9. [Google Scholar] [CrossRef]
- Saez-Tenorio, M.; Domenech, J.; García-Rodríguez, A.; Velázquez, A.; Hernández, A.; Marcos, R.; Cortés, C. Assessing the relevance of exposure time in differentiated Caco-2/HT29 cocultures. Effects of silver nanoparticles. Food Chem. Toxicol. 2019, 123, 258–267. [Google Scholar] [CrossRef]
- Vila, L.; García-Rodríguez, A.; Cortés, C.; Marcos, R.; Hernández, A. Assessing the effects of silver nanoparticles on monolayers of differentiated Caco-2 cells, as a model of intestinal barrier. Food Chem. Toxicol. 2018, 116, 1–10. [Google Scholar] [CrossRef]
- Gillois, K.; Stoffels, C.; Leveque, M.; Fourquaux, I.; Blesson, J.; Mils, V.; Cambier, S.; Vignard, J.; Terrisse, H.; Mirey, G.; et al. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. Sci. Total. Environ. 2021, 754, 142324. [Google Scholar] [CrossRef]
- Imai, S.; Morishita, Y.; Hata, T.; Kondoh, M.; Yagi, K.; Gao, J.Q.; Nagano, K.; Higashisaka, K.; Yoshioka, Y.; Tsutsumi, Y. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure. Biochem. Biophys. Res. Commun. 2017, 484, 543–549. [Google Scholar] [CrossRef]
- Lichtenstein, D.; Ebmeyer, J.; Meyer, T.; Behr, A.-C.; Kästner, C.; Böhmert, L.; Juling, S.; Niemann, B.; Fahrenson, C.; Selve, S.; et al. It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. Eur. J. Pharm. Biopharm. 2017, 118, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Taboada-López, M.V.; Leal-Martínez, B.H.; Domínguez-González, R.; Bermejo-Barrera, P.; Taboada-Antelo, P.; Moreda-Piñeiro, A. Caco-2 in vitro model of human gastrointestinal tract for studying the absorption of titanium dioxide and silver nanoparticles from seafood. Talanta 2021, 233, 122494. [Google Scholar] [CrossRef] [PubMed]
- Sieg, H.; Braeuning, C.; Kunz, B.M.; Daher, H.; Kästner, C.; Krause, B.C.; Meyer, T.; Jalili, P.; Hogeveen, K.; Böhmert, L.; et al. Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells. Nanotoxicology 2018, 12, 992–1013. [Google Scholar] [CrossRef] [PubMed]
- Sieg, H.; Klusmann, L.; Kreß, L.; Ellermann, A.L.; Böhmert, L.; Thünemann, A.F.; Braeuning, A. Counterions determine uptake and effects of aluminum in human intestinal and liver cells. Toxicol. Vitr. 2022, 79, 105295. [Google Scholar] [CrossRef]
- Vila, L.; García-Rodríguez, A.; Cortés, C.; Velázquez, A.; Xamena, N.; Sampayo-Reyes, A.; Marcos, R.; Hernández, A. Effects of cerium oxide nanoparticles on differentiated/undifferentiated human intestinal Caco-2 cells. Chem. Biol. Interact. 2018, 283, 38–46. [Google Scholar] [CrossRef]
- Sieg, H.; Schaar, C.; Fouquet, N.; Böhmert, L.; Thünemann, A.F.; Braeuning, A. Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells. Toxicol. Vitr. 2024, 96, 105772. [Google Scholar] [CrossRef]
- Perfecto, A.; Elgy, C.; Valsami-Jones, E.; Sharp, P.; Hilty, F.; Fairweather-Tait, S. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells. Nutrients 2017, 9, 359. [Google Scholar] [CrossRef]
- Voss, L.; Hoché, E.; Stock, V.; Böhmert, L.; Braeuning, A.; Thünemann, A.F.; Sieg, H. Intestinal and hepatic effects of iron oxide nanoparticles. Arch. Toxicol. 2021, 95, 895–905. [Google Scholar] [CrossRef]
- German Federal Institute for Risk Assessment (BfR). Updated Recommended Maximum Levels for the Addition of Vitamins and Minerals to Food Supplements and Conventional Foods. BfR Opinion No 009/2021; BfR-Stellungnahmen: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Wang, Y.; Kapronezai, K.; Lorente, L.R.; Zhang, R.; Pyrgiotakis, G.; Konduru, N.V.; Ericsson, M.; White, J.C.; de La Torre-Roche, R.; et al. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part Fibre Toxicol. 2017, 14, 40. [Google Scholar] [CrossRef]
- Ude, V.C.; Brown, D.M.; Viale, L.; Kanase, N.; Stone, V.; Johnston, H.J. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Part Fibre Toxicol. 2017, 14, 31. [Google Scholar] [CrossRef]
- Ude, V.C.; Brown, D.M.; Stone, V.; Johnston, H.J. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J. Nanobiotechnol. 2019, 17, 70. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C. Supported Gold Nanoparticles as Catalysts for the Oxidation of Alcohols and Alkanes. Front Chem. 2019, 7, 702. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv. 2020, 2, 764–3787. [Google Scholar] [CrossRef] [PubMed]
- Kohl, Y.; Hesler, M.; Drexel, R.; Kovar, L.; Dähnhardt-Pfeiffer, S.; Selzer, D.; Wagner, S.; Lehr, T.; von Briesen, H.; Meier, F. Influence of Physicochemical Characteristics and Stability of Gold and Silver Nanoparticles on Biological Effects and Translocation across an Intestinal Barrier—A Case Study from In Vitro to In Silico. Nanomaterials 2021, 11, 1358. [Google Scholar] [CrossRef] [PubMed]
- Enea, M.; Pereira, E.; Silva, D.D.; Costa, J.; Soares, M.E.; de Lourdes Bastos, M.; Carmo, H. Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches. Nanotechnology 2020, 31, 195102. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14, 4501. [Google Scholar] [CrossRef]
- Zhu, Y.; Che, R.; Zong, X.; Wang, J.; Li, J.; Zhang, C.; Wang, F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. J. Environ. Manag. 2024, 352, 120039. [Google Scholar] [CrossRef]
- Domenech, J.; Hernández, A.; Rubio, L.; Marcos, R.; Cortés, C. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Arch. Toxicol. 2020, 94, 2997–3012. [Google Scholar] [CrossRef]
- Busch, M.; Bredeck, G.; Kämpfer, A.A.M.; Schins, R.P.F. Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Environ. Res. 2021, 193, 110536. [Google Scholar] [CrossRef]
- Hesler, M.; Aengenheister, L.; Ellinger, B.; Drexel, R.; Straskraba, S.; Jost, C.; Wagner, S.; Meier, F.; von Briesen, H.; Büchel, C.; et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol. Vitr. 2019, 61, 104610. [Google Scholar] [CrossRef]
- Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Helsdingen, R.; van der Zande, M.; Rietjens, I.M.C.M.; Bouwmeester, H. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology 2015, 9, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kaneko, S.; Suzuki, Y.; Inamura, K.; Nishikawa, M.; Sakai, Y. Size-Dependent Internalization of Microplastics and Nanoplastics Using In Vitro Model of the Human Intestine—Contribution of Each Cell in the Tri-Culture Models. Nanomaterials 2024, 14, 1435. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; He, Q.; Wang, Z.; Yu, Y.; Gao, H.; Liu, Z.; Peng, H.; Wang, H.; Zhang, X.; Li, D.; et al. Mucin2 regulated by Ho1/p38/IL-10 axis plays a protective role in polystyrene nanoplastics-mediated intestinal toxicity. Environ. Pollut. 2023, 330, 121808. [Google Scholar] [CrossRef] [PubMed]
- Stock, V.; Böhmert, L.; Coban, G.; Tyra, G.; Vollbrecht, M.L.; Voss, L.; Paul, M.B.; Braeuning, A.; Sieg, H. Microplastics and nanoplastics: Size, surface and dispersant—What causes the effect? Toxicol. Vitr. 2022, 80, 105314. [Google Scholar] [CrossRef]
- Stock, V.; Böhmert, L.; Lisicki, E.; Block, R.; Cara-Carmona, J.; Pack, L.K.; Selb, R.; Lichtenstein, D.; Voss, L.; Henderson, C.J.; et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 2019, 93, 1817–1833. [Google Scholar] [CrossRef]
- Bredeck, G.; Halamoda-Kenzaoui, B.; Bogni, A.; Lipsa, D.; Bremer-Hoffmann, S. Tiered testing of micro- and nanoplastics using intestinal in vitro models to support hazard assessments. Environ. Int. 2022, 158, 106921. [Google Scholar] [CrossRef]
- Kim, W.-H.; Lee, D.H.; Kim, J.E.; Jeong, H.W.; Chung, J.O.; Roh, J.H.; Kim, W.G.; Fu, X.; Shim, S. Characterization of the intestinal transport mechanism of polystyrene microplastics (MPs) and the potential inhibitory effect of green tea extracts on MPs intestinal absorption. Toxicol. Vitr. 2024, 97, 105813. [Google Scholar] [CrossRef]
- Busch, M.; Kämpfer, A.A.; Schins, R.P. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. Chemosphere. 2021, 284, 131345. [Google Scholar] [CrossRef]
- Banaei, G.; García-Rodríguez, A.; Tavakolpournegari, A.; Martín-Pérez, J.; Villacorta, A.; Marcos, R.; Hernández, A. The release of polylactic acid nanoplastics (PLA-NPLs) from commercial teabags. Obtention, characterization, and hazard effects of true-to-life PLA-NPLs. J. Hazard. Mater. 2023, 458, 131899. [Google Scholar] [CrossRef]
- Paul, M.B.; Böhmert, L.; Hsiao, I.-L.; Braeuning, A.; Sieg, H. Complex intestinal and hepatic in vitro barrier models reveal information on uptake and impact of micro-, submicro- and nanoplastics. Environ. Int. 2023, 179, 108172. [Google Scholar] [CrossRef]
- Yang, Z.; DeLoid, G.M.; Baw, J.; Zarbl, H.; Demokritou, P. Assessment of Ingested Micro- and Nanoplastic (MNP)-Mediated Genotoxicity in an In Vitro Model of the Small Intestinal Epithelium (SIE). Nanomaterials 2024, 14, 807. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cao, X.; Molina, R.M.; Silva, D.I.; Bhattacharya, K.; Ng, K.W.; Loo, S.C.J.; Brain, J.D.; Demokritou, P. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ. Sci. Nano 2019, 6, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Jabor, Z.; Sutton, S.C. Effects of Digestion, Cell Culture Media, and Mucous on the Physical Properties, Cellular Effects, and Translocation of Polystyrene and Polymethacrylate Nanoparticles. Toxics 2023, 11, 708. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.B.; Böhmert, L.; Thünemann, A.F.; Loeschner, K.; Givelet, L.; Fahrenson, C.; Braeuning, A.; Sieg, H. Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics. Food Chem. Toxicol. 2023, 184, 114423. [Google Scholar] [CrossRef] [PubMed]
- DeLoid, G.M.; Cao, X.; Bitounis, D.; Singh, D.; Llopis, P.M.; Buckley, B.; Demokritou, P. Toxicity, uptake, and nuclear translocation of ingested micro-nanoplastics in an in vitro model of the small intestinal epithelium. Food Chem. Toxicol. 2021, 158, 112609. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cao, X.; Coreas, R.; Bitounis, D.; Singh, D.; Zhong, W.; Demokritou, P. Incineration-Generated Polyethylene Micro-Nanoplastics Increase Triglyceride Lipolysis and Absorption in an In Vitro Small Intestinal Epithelium Model. Environ. Sci. Technol. 2022, 56, 12288–12297. [Google Scholar] [CrossRef]
- Kämpfer, A.A.M.; Busch, M.; Büttner, V.; Bredeck, G.; Stahlmecke, B.; Hellack, B.; Masson, I.; Sofranko, A.; Albrecht, C.; Schins, R.P.F. Model Complexity as Determining Factor for In Vitro Nanosafety Studies: Effects of Silver and Titanium Dioxide Nanomaterials in Intestinal Models. Small 2021, 17, 2004223. [Google Scholar] [CrossRef]
- Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Helsdingen, R.; van der Zande, M.; Rietjens, I.M.C.M.; Bouwmeester, H. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology 2015, 9, 886–894. [Google Scholar] [CrossRef]
- Vilarinho, F.; Silva, A.S.; Vaz, M.F.; Farinha, J.P. Nanocellulose in green food packaging. Crit. Rev. Food Sci. Nutr. 2018, 58, 1526–1537. [Google Scholar] [CrossRef]
- Brand, W.; van Kesteren, P.C.E.; Swart, E.; Oomen, A.G. Overview of potential adverse health effects of oral exposure to nanocellulose. Nanotoxicology 2022, 16, 217–246. [Google Scholar] [CrossRef]
- Liu, L.; Kong, F. The behavior of nanocellulose in gastrointestinal tract and its influence on food digestion. J. Food Eng. 2021, 292, 110346. [Google Scholar] [CrossRef]
- Vincentini, O.; Blier, A.; Bogni, A.; Brun, M.; Cecchetti, S.; de Battistis, F.; Denis, S.; Etienne-Mesmin, L.; Ferraris, F.; Fumagalli, F.S.; et al. EFSA Project on the use of New Approach Methodologies (NAMs) for the hazard assessment of nanofibres. Lot 1, nanocellulose oral exposure: Gastrointestinal digestion, nanofibres uptake and local effects. EFSA Support. Publ. 2023, 20, 8258E. [Google Scholar] [CrossRef]
- Khare, S.; DeLoid, G.M.; Molina, R.M.; Gokulan, K.; Couvillion, S.P.; Bloodsworth, K.J.; Eder, E.K.; Wong, A.R.; Hoyt, D.W.; Bramer, L.M.; et al. Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact 2020, 18, 100216. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, N.P.; Caffaro, M.M.; Davis, K.; Aravamudhan, S.; Sumner, S.J.; Fennell, T.R. Investigation of eight cellulose nanomaterials’ impact on Differentiated Caco-2 monolayer integrity and cytotoxicity. Food Chem. Toxicol. 2022, 166, 113204. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Drexel, R.; Burkhart, M.; Dähnhardt-Pfeiffer, S.; Wien, L.; Herrmann, C.; Knoll, T.; Metzger, C.; Briesen, H.; Wagner, S.; et al. Ex vivo models for intestinal translocation studies of cellulose nanocrystals. Vitr. Model. 2023, 2, 181–194. [Google Scholar] [CrossRef]
- Guo, Z.; DeLoid, G.M.; Cao, X.; Bitounis, D.; Sampathkumar, K.; Ng, K.W.; Loo, S.C.J.; Demokritou, P. Effects of ingested nanocellulose and nanochitosan materials on carbohydrate digestion and absorption in an in vitro small intestinal epithelium model. Environ. Sci. Nano 2021, 8, 2554–2568. [Google Scholar] [CrossRef]
- Carnovale, C.; Guarnieri, D.; Di Cristo, L.; De Angelis, I.; Veronesi, G.; Scarpellini, A.; Malvindi, M.A.; Barone, F.; Pompa, P.P.; Sabella, S. Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. Nanomaterials 2021, 11, 1587. [Google Scholar] [CrossRef]
- Cabellos, J.; Delpivo, C.; Fernández-Rosas, E.; Vázquez-Campos, S.; Janer, G. Contribution of M-cells and other experimental variables in the translocation of TiO2 nanoparticles across in vitro intestinal models. NanoImpact 2017, 5, 51–60. [Google Scholar] [CrossRef]
- Jeliazkova, N.; Apostolova, M.D.; Andreoli, C.; Barone, F.; Barrick, A.; Battistelli, C.; Bossa, C.; Botea-Petcu, A.; Châtel, A.; de Angelis, I.; et al. Towards FAIR nanosafety data. Nat. Nanotechnol. 2021, 16, 644–654. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Haase, A.; Barroso, J.; Bogni, A.; Bremer-Hoffmann, S.; Fessard, V.; Gutleb, A.C.; Mast, J.; McVey, E.; Mertens, B.; Oomen, A.G.; et al. Proposal for a qualification system for New Approach Methodologies (NAMs) in the food and feed sector: Example of implementation for nanomaterial risk assessment. EFSA Support. Publ. 2024, 21, 9008E. [Google Scholar] [CrossRef]
Search Terms | PubMed | Scopus |
---|---|---|
Nanoparticle AND intestinal in vitro AND uptake/accumulation | 425 | 491 |
Nanoparticle AND intestinal in vitro AND crossing/translocation | 155 | 55 |
Nanoparticle AND intestinal in vitro AND barrier integrity | 55 | 66 |
Titanium oxide nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 20 | 9 |
Zinc oxide nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 10 | 18 |
Silica oxide nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 38 | 10 |
Silver nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 37 | 45 |
Aluminum nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 5 | 1 |
Cerium nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 7 | 2 |
Copper nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 4 | 0 |
Iron nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 38 | 6 |
Gold nanoparticles AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 27 | 6 |
Microplastic OR nanoplastic AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 120 | 51 |
Nanocelluloses OR nanofibers AND intestinal in vitro AND uptake/accumulation OR crossing/translocation OR barrier integrity | 14 | 1 |
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Model Type | Studies using human in vitro intestinal barrier models Source and description of biological models | Studies using not human in vitro models or acellular system |
Focus of Study | Studies investigating barrier impairment, uptake, or translocation of nanoparticles across in vitro human intestinal barrier | General studies on cytotoxicity not mentioning uptake or crossing Studies reporting poor quality data |
Material Type | Studies including source and description of the nanomaterial Studies using engineered nanoparticles, nanomaterials, nanocarriers, or nano-formulations intended for oral or gastrointestinal exposure | Studies focusing on non-nano materials |
Publication Type | Original research articles with experimental data Peer review papers | Duplicates studies: the most recent one was included Non original research Non-peer-reviewed articles or grey literature Reviews, conference abstracts, editorials, letters, commentaries, or patents |
Physical–chemical parameters | NMs identification (size, shape, coating, material physical state, use of dispersants) NMs characterization Dispersion protocol |
Experimental parameters | NMs dose Time of exposure Cell culture model Model characterization Insert pore size Detection techniques (ICP-MS 1, ICP-OES 2, others) |
Endpoints | Barrier impairment NMs uptake NMs translocation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritarossi, C.; Prota, V.; De Battistis, F.; Battistelli, C.L.; De Angelis, I.; Andreoli, C.; Vincentini, O. Nanoparticle Uptake and Crossing by Human In Vitro Models of Intestinal Barriers: A Scoping Review. Nanomaterials 2025, 15, 1195. https://doi.org/10.3390/nano15151195
Ritarossi C, Prota V, De Battistis F, Battistelli CL, De Angelis I, Andreoli C, Vincentini O. Nanoparticle Uptake and Crossing by Human In Vitro Models of Intestinal Barriers: A Scoping Review. Nanomaterials. 2025; 15(15):1195. https://doi.org/10.3390/nano15151195
Chicago/Turabian StyleRitarossi, Chiara, Valentina Prota, Francesca De Battistis, Chiara Laura Battistelli, Isabella De Angelis, Cristina Andreoli, and Olimpia Vincentini. 2025. "Nanoparticle Uptake and Crossing by Human In Vitro Models of Intestinal Barriers: A Scoping Review" Nanomaterials 15, no. 15: 1195. https://doi.org/10.3390/nano15151195
APA StyleRitarossi, C., Prota, V., De Battistis, F., Battistelli, C. L., De Angelis, I., Andreoli, C., & Vincentini, O. (2025). Nanoparticle Uptake and Crossing by Human In Vitro Models of Intestinal Barriers: A Scoping Review. Nanomaterials, 15(15), 1195. https://doi.org/10.3390/nano15151195