A Review on the Design Strategies of Copper-Based Catalysts for Enhanced Activity and Stability in Methanol Reforming to Hydrogen
Abstract
1. Introduction
2. Key Influencing Factors of Copper-Based Catalyst Activity and Stability
2.1. Active Site and Reaction Mechanism
- (1)
- Influence of temperature: At lower temperatures (<250 °C), Cu is more stable and plays a key role in the water–gas shift reaction (WGSR) to promote the conversion of CO to CO2. At higher temperatures (>300 °C), CuO is more dominant and dominates the methanol dehydrogenation reaction. For example, studies have shown that at 200 °C, the proportion of Cu is as high as 60%, and at 350 °C the proportion of CuO increases to 85% [24].
- (2)
- Effect of water/methanol ratio: under the high water/methanol ratio (>3:1), H2O dissociation was enhanced, and the Cu ratio increased, which promoted WGSR to reduce CO concentration. It has been found that when the water/methanol ratio is increased from 1:1 to 4:1, the Cu ratio increases from 30% to 50%, and the CO selectivity decreases to <1% [25].
- (3)
- Effect of support: ZnO support stabilizes Cu by forming Cu–O–Zn interface, and some studies have shown that the proportion of Cu in Cu/ZnO catalyst is 25% higher than that of Cu/Al2O3 [26].
2.2. Deactivation Mechanism
2.3. Dynamic Coupling Effect of Reaction Conditions and Operating Parameters
3. Design Strategies for Copper-Based Nanocatalysts
3.1. Nanostructure Design and Dispersion Control
3.2. Surface Nanoengineering and Interface Synergy
3.3. Multivariate Collaborative Optimization of Nanocomposites
3.4. Catalytic Design of Electrochemical Reduction Systems
- (1)
- Nanostructure engineering: constructing high-curvature surfaces to increase low-coordination active sites. For example, the dendrite Cu nanowire (20 nm diameter) increased the FE of C2 product to 75% (−1.1 V, 0.1 M KHCO3) due to its abundant edge sites, which was 2.3 times higher than that of planar electrodes. Oxygen-vacancy-mediated confinement effects have also been shown to reduce the C-C coupling energy barrier: for every 1 × 1021 cm−3 increase in oxygen vacancy concentration in the CeO2-x/Cu heterostructure, the rate of C2H4 formation is increased by 28 percent (from 0.75 eV to 0.52 eV) [84].
- (2)
- Electron control of the carrier: The nitrogen-doped carbon support enhances the Cu electron density through p-d orbital hybridization, weakens the adsorption strength of *CO (the adsorption energy increases from −1.5 eV to −0.9 eV), thereby promoting the desorption and dimerization of *CO. Experiments have shown that the C2H4/ethanol ratio can be optimized from 1:1 to 4:1 at a pyridine nitrogen content of >5 at% [83].
- (3)
- Electrolysis System Synergy: Membrane Electrode Assembly (MEA) Design Breaks Through Mass Transfer Limitations. In a solid-state electrolyte reactor, the gas diffusion layer of the Cu/PTFE composite cathode (50 μm thick) increases the CO2 flux to 200 mL/min·cm2 and the C2H4 yield to 1.2 A/cm2, while avoiding catalyst deactivation due to carbonate precipitation [24]. However, the industrial-grade conversion still faces a bottleneck: at a current density of >300 mA/cm2, the Cu catalyst has a lifetime of <100 h due to cathodic corrosion. The pulsed potential strategy (−0.8 V/−0.2 V alternation) extends the stability to 500 h by periodically reducing copper oxide, but with a 15% loss of energy efficiency [85]. In the future, it is necessary to combine machine learning to optimize the potential waveform and develop corrosion-resistant carriers (TiN-coated carbon paper) to realize the leap of CO2RR from the laboratory to the green hydrogen industry chain.
3.5. Green Nanosynthesis and Intelligent Regeneration Technology
4. Advanced Characterization and Theoretical Calculation
4.1. In Situ Characterization Techniques
4.2. DFT Calculations
4.3. Synergistic Optimization Mechanism of Activity and Stability
- (1)
- Scarcity and bias of high-quality training data: ML models rely heavily on large, high-quality, and standardized experimental data. However, data in the field of catalysis, especially those involving complex deactivation behaviors or industrial conditions, are often scattered, inconsistent, and limited in scale. There is a ‘gap’ between the data on ideal conditions at the laboratory scale and the complex data on mass and heat transfer, feedstock fluctuations, and long-term stability in industrial-scale reactors, resulting in increased bias in model predictions when scale-up or real-world applications.
- (2)
- Limited model transferability: Models trained on specific catalyst systems or reaction conditions are often difficult to directly generalize to new systems with different chemical spaces or operating conditions. Industrial MSR involves complex dynamic processes such as raw material fluctuations, start–stop cycles, and impurity influences, and the current ML models have limited generalization capabilities for such ‘out-of-distribution’ scenarios.
- (3)
- Lack of predictive interpretability: Complex ‘black box’ models provide highly accurate predictions, but they struggle to provide physicochemical insights into ‘why’ specific combinations or parameters are better. This hinders mechanistic understanding and rational catalyst design based on ML results.
- (4)
- Computational cost and real-time control delay: The full-scale simulation of industrial reactors with strong multi-parameter coupling is extremely expensive. Although ML-based real-time optimization control can improve dynamic stability, it still faces the problem of data processing and decision-making delay under the high-dimensional space and rapid response requirements.
4.4. Dynamic In Situ Multimodal Characterization and Cross-Scale Theoretical Modeling
5. Challenges and Prospects
5.1. Problems That Still Exist in Current Research
5.2. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Yan, H.; Xu, Y.; Li, H.; Li, W.; Liu, Y.; Wang, L. Study on the activity of catalyst for hydrogen production by copper-based methanol water vapor reforming. Shandong Chem. Ind. 2015, 44, 23–25. [Google Scholar]
- Yan, H.; Li, H.; Li, W.; Xu, Y.; Liu, Y. Effect of Different Alumina on Catalyst Activity of Copper-based Methanol Water Vapor Reforming for Hydrogen Production. Sichuan Chem. Ind. 2016, 19, 21–24. [Google Scholar]
- Chen, M.; Mei, Z.; Chen, K.; Luo, Y. Research progress on hydrogen production catalyzed by methanol steam reforming with Cu-based catalysts. Petrochem. Technol. 2017, 46, 1536–1541. [Google Scholar]
- Bai, X.; Liu, C.; Wu, F.; Fan, C.; Lan, W. Research and application progress of methanol hydrogen production technology. Guangzhou Chem. Ind. 2020, 48, 8–9+25. [Google Scholar]
- Sun, X.; Sha, Q.; Wang, C.; Zhou, D. Research Progress on Copper-based Catalysts for Methanol Reforming to Hydrogen. CIESC J. 2021, 72, 5975–6001. [Google Scholar]
- Wang, F.; Guan, D.; Dou, W. Research progress on the intensification of methanol steam reforming process for hydrogen production. China Sci. Technol. Pap. Online 2022, 15, 1–20. [Google Scholar]
- Liu, C.; Hu, X. Theoretical study on CO2 hydrogenation to formic acid and design of high-efficiency iron-based catalyst. Mol. Catal. 2022, 36, 162–170. [Google Scholar]
- Han, X.; Zhong, H.; Li, J.; Song, R.; Pan, L.; Tang, H. Research Progress on Cu-based Catalysts for Methanol Vapor Reforming to Hydrogen with Different Carriers. China Biogas 2022, 40, 18–23. [Google Scholar]
- Zhu, S.; Shen, Y.; Hu, T.; Lu, L. Study on Preparation of Chalcopyrite by Copper-based Catalyst for Methanol Water Vapor Reforming for Hydrogen Production. J. Wuhan Univ. Sci. Technol. 2023, 46, 40–46. [Google Scholar]
- Ju, H. Design and analysis of methanol reforming process for hydrogen production. Guangdong Chem. Ind. 2022, 49, 217–219. [Google Scholar]
- Zhang, Z.; Jing, X.; Xu, H.; Li, Z.; Yan, W. Research Progress on Design and Reaction Mechanism of Copper-based Catalysts for Electrocatalytic Carbon Dioxide Reduction. Chin. J. Anal. Chem. 2023, 51, 316–330. [Google Scholar]
- Zhang, M.; Liu, Z.; Yan, Y.; Liu, D.; Xu, G.; An, Y.; Zou, Y.; Yu, Y.; Francisco, J.S.; He, H. Optimizing selectivity via steering dominant reaction mechanisms in steam reforming of methanol for hydrogen production. Nat. Commun. 2025, 16, 1943. [Google Scholar] [CrossRef] [PubMed]
- Purnama, H. Catalytic Study of Copper Based Catalysts for Steam Reforming of Methanol. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 17 December 2003. [Google Scholar]
- Mortazavi-Manesh, A.; Safari, N.; Bahadoran, F.; Khani, Y. Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts. Heliyon 2023, 9, 54–59. [Google Scholar] [CrossRef]
- Huo, K.; Wang, Y.; Wu, M. Research Progress on Cu-based Catalysts for CO2 Hydrogenation to Methanol. Low Carbon Chem. Chem. Eng. 2023, 48, 22–31. [Google Scholar]
- Jia, C.; Zhang, Z.; Chen, H.; Wang, Y.; Xu, G.; Chen, H. Zero-carbon new energy absorption system based on hydrogen production by water electrolysis and methanol synthesis/reforming. Mod. Chem. Ind. 2023, 43, 219–223. [Google Scholar]
- Cong, X.; Zhang, Z.; Feng, Y.; Qiu, H.; Huang, C.; Tang, M.; Zhao, L. Effect of La Doping on Hydrogen Production Performance by Methanol Water Vapor Reforming of CuO/CeO2 Nanorods. Anhui Chem. Ind. 2023, 49, 96–100. [Google Scholar]
- Shi, Y.; Lin, G.; Sun, X.; Jiang, W.; Qiao, D.; Yan, B. Research progress on the active sites of copper-based catalysts in the process of carbon dioxide hydrogenation to methanol. Chem. Ind. Eng. Prog. 2023, 42, 287–298. [Google Scholar]
- Xian, J.; Gao, W.; Xu, Y.; Zhou, J.; Chen, Z.; Na, W. Study on Improvement Strategy of Copper Valence Distribution on CO2 Hydrogenation to Methanol Catalyst. Mod. Chem. Ind. 2023, 43, 24–28+33. [Google Scholar]
- Chen, F.; Zhong, Z.; Qi, R. Research Progress on Electroreduction of Carbon Dioxide to Formic Acid by Copper-based Catalysts. Chem. Ind. Eng. Prog. 2024, 43, 3051–3060. [Google Scholar]
- Chen, Z.; Zhuang, Y.; Du, W.; Yin, D.; Deng, Y. A brief analysis on the R&D and application prospect of CO2 hydrogenation to methanol. Dongfang Electr. Rev. 2023, 37, 6–10+14. [Google Scholar]
- Li, H.; Xiao, Y.; Xiao, J.; Fan, K.; Li, B.; Li, X.; Wang, L.; Xiao, F. Gallium-modified copper-based hydrophobic catalyst for selective hydrogenation of CO2 to dimethyl ether. Chin. J. Catal. 2023, 54, 178–187. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y.; Yuan, H. Research Progress on Performance Regulation of Copper-based Catalysts for Methyl Acetate Hydrogenation to Ethanol. Low Carbon Chem. Chem. Eng. 2024, 49, 44–50. [Google Scholar]
- Lytkina, A.A.; Orekhova, N.V.; Ermilova, M.M.; Yaroslavtsev, A. The influence of the support composition and structure (MXZr1-XO2-δ) of bimetallic catalysts on the activity in methanol steam reforming. Int. J. Hydrogen Energy 2018, 43, 198–207. [Google Scholar] [CrossRef]
- Blanco, H.; Palacio, L.A.; Rodrigues, V.; Faro, A., Jr. Cu–Mn–Al based catalyst for the direct syngas to dimethyl ether conversion. React. Kinet. Mech. Catal. 2024, 137, 913–934. [Google Scholar] [CrossRef]
- Tedeeva, M.A.; Kustov, A.L.; Batkin, A.M.; Garifullina, C.; Zalyatdinov, A.A.; Yang, D.; Dai, Y.; Yang, Y.; Kustov, L.M. Catalytic systems for hydrogenation of CO2 to methanol. Mol. Catal. 2024, 566, 114403. [Google Scholar] [CrossRef]
- Jitrwung, R.; Krekkeitsakul, K.; Teerananont, N.; Thongyindee, P.; Patthaveekongka, W.; Areeprasert, C. Utilization of CO2 and recycling of methanol Residue from the refining process for production of Bio-Methanol. Carbon Resour. Convers. 2025, 8, 100302. [Google Scholar] [CrossRef]
- Hu, L.; Dai, C.; Chen, L.; Zhu, Y.; Hao, Y.; Zhang, Q.; Gu, L.; Feng, X.; Yuan, S.; Wang, L.; et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2021, 60, 27324–27329. [Google Scholar] [CrossRef]
- Chen, L.H.; Sun, M.H.; Wang, Z.; Yang, W.; Xie, Z.; Su, B.-L. Hierarchically structured zeolites: From design to application. Chem. Rev. 2020, 120, 11194–11294. [Google Scholar] [CrossRef]
- Tonekaboni, M.F.; Rezaei, M.; Alavi, S.M.; Akbari, E. Synthesis and evaluation of Cu-based catalysts employed in the medium temperature water gas shift reaction. Int. J. Hydrogen Energy 2025, 101, 139–147. [Google Scholar] [CrossRef]
- Li, J.; Lin, W.; Lu, M.; Liao, J.; Hu, C.; Wang, T. High density ultra-small Cu nanoparticles with abundant oxygen vacancies for efficient hydrogen evolution from MeOH/H2O. J. Catal. 2024, 430, 115316. [Google Scholar] [CrossRef]
- Yu, X.; Yang, J.; Tan, J.; Du, J.; Ru, Y. Current status and development trend of methanol synthesis technology. Energy Chem. Ind. 2024, 45, 12–20. [Google Scholar]
- Guo, J.; Cao, L.; Wang, Z. Research Progress on Methanol Water Steam Reforming for Hydrogen Production. Energy Conserv. 2024, 43, 121–123. [Google Scholar]
- Huang, M.; Bo, Q.; Li, J.; Qiao, J.; Yuan, S.; Zhang, B.; Chen, H.; Jiang, Y. Effect of Al2O3 Precursor on the Performance of Cu/ZnO/Al2O3 in Catalyzing Methanol Reforming for Hydrogen Production. J. Fuel Chem. Technol. 2024, 52, 1443–1452. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, Y.; Wang, R.; Wu, Q.; Shi, D.; Chen, K.; Li, H. Research Progress on Copper-based Catalysts for Reverse Water Vapor Shift Reaction. Ind. Catal. 2024, 32, 1–17. [Google Scholar]
- Zou, J.; Zhang, J.; Wu, X.; Wei, C.; Fang, S.; Wang, Y. Comprehensive Experiment on Nitrate Synthesis of Ammonia Based on Electrocatalytic Reduction: Preparation Characterization, Performance Exploration and Application Design of Copper-based Catalyst. Univ. Chem. 2024, 39, 373–382. [Google Scholar] [CrossRef]
- Zhu, G.; Ge, Q.; Fu, M. Durability evaluation and life prediction method of methanol reforming catalyst for hydrogen production. Chem. Ind. Eng. Prog. 2025, 44, 1338–1346. [Google Scholar]
- Mateos-Pedrero, C.; Silva, H.; Tanaka, D.A.P.; Liguori, S.; Iulianelli, A.; Basile, A.; Mendes, A. CuO/ZnO catalysts for methanol steam reforming: The role of the support polarity ratio and surface area. Appl. Catal. B Environ. 2015, 174, 67–76. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, L.; Ni, C.; Sun, T.; Zhao, S.; Wang, S.; Wang, A.; Hu, Y. CeO2–ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming. Int. J. Hydrogen Energy 2013, 38, 4397–4406. [Google Scholar] [CrossRef]
- Fornari, A.C.; Pimenta, J.L.C.W.; dos Santos, O.A.A.; Jorge, L.M.d.M. Statistical optimization of the composition of CuO–ZnO/Al2O3 catalysts for methanol steam reforming. Braz. J. Chem. Eng. 2021, 38, 523–548. [Google Scholar] [CrossRef]
- Rostami, M.; Farajollahi, A.H.; Amirkhani, R.; Farshchi, M.E. A review study on methanol steam reforming catalysts: Evaluation of the catalytic performance, characterizations, and operational parameters. AIP Adv. 2023, 13, 030701. [Google Scholar] [CrossRef]
- Hafezi-Bakhtiari, J.; Bazyari, A.; Rezaei, M.; Akbari, E.; Babaei, E. Optimizing bimetallic and multimetallic Cu-based catalysts by promoters for enhanced reverse Water-Gas Shift reaction: Insights and stability assessments. J. CO2 Util. 2024, 88, 102934. [Google Scholar] [CrossRef]
- Pathak, R.; Punetha, V.D.; Bhatt, S.; Punetha, M. A review on copper-based nanoparticles as a catalyst: Synthesis and applications in coupling reactions. J. Mater. Sci. 2024, 59, 6169–6205. [Google Scholar] [CrossRef]
- Yesupatham, M.S.; Honnappa, B.; Agamendran, N.; Kumar, S.Y.; Chellasamy, G.; Govindaraju, S.; Yun, K.; Selvam, N.C.S.; Maruthapillai, A.; Li, W.; et al. Recent Developments in Copper-Based Catalysts for Enhanced Electrochemical CO2 Reduction. Adv. Sustain. Syst. 2024, 8, 2300549. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, J.; Wang, P.; Jin, H.; Zheng, Y.; Qiao, S. Recent advances in electrocatalytic hydrogenation reactions on copper-based catalysts. Adv. Mater. 2024, 36, 2307913. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; You, J.; Li, J.; Wang, Z.; Zhao, Y.; Xu, J.; Duan, M.; Zhang, H. Progress of Copper-based Nanocatalysts in Advanced Oxidation Degraded Organic Pollutants. ChemCatChem 2024, 16, e202301108. [Google Scholar] [CrossRef]
- Nikam, R.R.; Manikanta, P.; Patil, K.N.; Mounesh; Kainthla, I.; Patil, S.A.; Nagaraja, B.M. State-of-the-art for the development of Cu-based heterogeneous catalysts for efficient utilization of furfural to value chemicals via liquid-phase and gas-phase reactions. Catal. Rev. 2025, 67, 1–56. [Google Scholar] [CrossRef]
- Luo, C.; Liu, X.; Yang, K.; Xu, J.; Zhu, Z.; Tang, Z.; Shen, S.; Fan, J.; Luo, D.; Alshammari, N.A.H.; et al. Coordination structure engineering of Cu-based electrocatalysts for electrocatalytic water splitting. Coord. Chem. Rev. 2024, 516, 215936. [Google Scholar] [CrossRef]
- Zhong, Y.; Sun, Z.; Xia, B.Y.; Su, Y. Structural Reconstruction of Copper-Based Catalysts in CO2 Electroreduction Reaction: A Comprehensive Review. Chem. A Eur. J. 2025, 31, e202500770. [Google Scholar] [CrossRef]
- Bonthula, S.; Bonthula, S.R.; Pothu, R.; Srivastava, R.K.; Boddula, R.; Radwan, A.B.; Al-Qahtani, N. Recent advances in copper-based materials for sustainable environmental applications. Sustain. Chem. 2023, 4, 246–271. [Google Scholar] [CrossRef]
- Han, J.; Ma, J.; Zhou, J.; Chen, X.; Wan, Z.; Zhao, Y. Insight into the effect of surface coverage of carbon support on selective CO2 electroreduction to C2H4 over copper-based catalyst. Appl. Surf. Sci. 2023, 609, 155394. [Google Scholar] [CrossRef]
- Qi, X.; Wang, Y.; Liu, C.; Liu, Q. The challenges and comprehensive evolution of Cu-based zeolite catalysts for SCR systems in diesel vehicles: A review. Catal. Surv. Asia 2023, 27, 181–206. [Google Scholar] [CrossRef]
- Li, M.; Hu, Y.; Wu, T.; Sumboja, A.; Geng, D. How to enhance the C2 products selectivity of copper-based catalysts towards electrochemical CO2 reduction?—A review. Mater. Today 2023, 67, 320–343. [Google Scholar] [CrossRef]
- Zhao, M.; Yin, W.; Xiao, J.; Dong, J.; Deng, J.; Li, L.; Li, X.; Li, X.; Peng, B.; Dong, H. Peracetic acid activation by chitosan-derived nitrogen-doped carbon spheres loaded with zero-valent copper for efficient sulfamethazine degradation in groundwater. Sep. Purif. Technol. 2025, 358, 130291. [Google Scholar] [CrossRef]
- Huang, J.; Ning, S.; Luo, B.; Wang, Z.; Deng, W.; Zhao, B.; Su, Y. Copper-based catalysts supported on novel Metal-Organic Framework MIL-125 (Ti) for selective catalytic reduction of NO with CO. Fuel 2024, 364, 131167. [Google Scholar] [CrossRef]
- Wang, F.; Lu, Z.; Guo, H.; Hao, G.; Jiang, W.; Liu, G. Copper-based catalysts for CO2 electroreduction to C2/2+ products: Advance and perspective. Coord. Chem. Rev. 2024, 515, 215962. [Google Scholar] [CrossRef]
- Kute, A.D.; Gaikwad, R.P.; Warkad, I.R.; Gawande, M.B. A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chem. 2022, 24, 3502–3573. [Google Scholar] [CrossRef]
- Sayyahi, S.; Saghanezhad, S.J. Copper-based bulk and nano-catalysts for the one-pot propargylamine synthesis. Mini-Rev. Org. Chem. 2019, 16, 361–368. [Google Scholar] [CrossRef]
- Gordeychuk, D.I.; Sorokoumov, V.N.; Mikhaylov, V.N.; Panov, M.S.; Khairullina, E.M.; Melnik, M.V.; Kochemirovsky, V.A.; Balova, I.A. Copper-based nanocatalysts produced via laser-induced ex situ generation for homo-and cross-coupling reactions. Chem. Eng. Sci. 2020, 227, 115940. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, P.; Tang, J.; Yang, L.; Jie, D. Numerical simulation of catalytic reaction kinetics in a sine wave tubular methanol steam reforming reactor. Int. J. Hydrogen Energy 2024, 60, 82–93. [Google Scholar] [CrossRef]
- Zaza, L.; Rossi, K.; Buonsanti, R. Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 2022, 7, 1284–1291. [Google Scholar] [CrossRef]
- Zuo, W.; Fan, Z.; Chen, L.; Liu, J.; Wan, Z.; Xiao, Z.; Chen, W.; Wu, L.; Chen, D.; Zhu, X. Copper-based theranostic nanocatalysts for synergetic photothermal-chemodynamic therapy. Acta Biomater. 2022, 147, 258–269. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Ghorbannezhad, F.; Issaabadi, Z.; Sajadi, S.M. Recent developments in the biosynthesis of Cu-based recyclable nanocatalysts using plant extracts and their application in the chemical reactions. Chem. Rec. 2019, 19, 601–643. [Google Scholar] [CrossRef]
- Jiang, Y. Current status and development trend of CO2 hydrogenation to methanol. Energy Chem. Ind. 2024, 45, 1–8. [Google Scholar]
- Sampatkumar, H.G.; Gundakanal, S.S.; Gowda, B.; Doddamani, S.V.; Sasidhar, B.S.; Bugarin, A.; Patil, S.A. Catalyst to cure: Applications of a new copper-based nanocatalyst in organic synthesis and cancer treatment. Chem. Commun. 2025, 61, 101–104. [Google Scholar] [CrossRef]
- Maleki, M.H.; Shirani, M.A.; Dinari, M. Facile synthesis of green and efficient copper-based magnetically recoverable nanocatalyst for the reduction of nitrophenol derivatives. J. Mol. Liq. 2022, 365, 120189. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, D.; Min, Y.; Li, Y.; Huang, H. Design strategy of copper-based catalyst for electrocatalytic carbon dioxide reduction. Clean Coal Technol. 2024, 30, 41–57. [Google Scholar]
- Dong, J.; Shan, M.; Wang, H. Au-CuO/Cu2O tandem catalytic enhanced electrocatalytic reduction of CO2 to ethanol. Chem. Ind. Eng. Prog. 2025, 44, 277–285. [Google Scholar]
- Sanati-Tirgan, P.; Eshghi, H.; Mohammadinezhad, A. Synthesis and catalytic applications of highly stable copper-based metal–organic framework as an efficient heterogeneous nanocatalyst for solvent-free Suzuki–Miyaura cross-coupling reaction. Appl. Organomet. Chem. 2024, 38, e7487. [Google Scholar] [CrossRef]
- He, Q.; Li, Z.; Wang, Q.; Zhang, J.; Liu, C. Research Progress on Hydrophobic Modification of Cu-based Catalysts for Carbon Dioxide Hydrogenation to Methanol. Petrochem. Technol. Appl. 2024, 42, 149–155. [Google Scholar]
- Priya, S.C.; Vijayalakshmi, S.; Raghavendra, S.G.; Yıldızhan, S.; Ranjitha, J. A critical review on efficient photocatalytic degradation of organic compounds using copper-based nanoparticles. Mater. Today Proc. 2023, 80, 3075–3081. [Google Scholar] [CrossRef]
- Li, S.; Yan, Q.; Jia, X.; Ning, N.; Ge, P. Hydrogen production performance of Methanol water vapor reforming monolithic catalyst with CuO/ZnO/Al2O3 stainless steel fiber felt structure. Chem. React. Eng. Technol. 2024, 40, 35–40. [Google Scholar]
- Lin, T.; Cheng, J.; Zhang, B.; Fan, J.; Gao, M.; Zheng, J.; Chao, Z.; Li, G.; Ma, X.; Du, H.; et al. Dehydrogenation of propylene glycol methyl ether to methoxyacetone on copper-based catalyst. Ind. Catal. 2024, 32, 46–49. [Google Scholar]
- Sharma, K.; Khatik, N.; Khandelwal, A.R.; Meena, R.; Bhadauria, S.; Singh, M.; Sachdeva, H. Ecofriendly Synthesis of DHPMs using Copper-based Nano catalysts and Evaluation of Antibacterial Activity. Croat. Chem. Acta 2023, 96, 69–79. [Google Scholar] [CrossRef]
- Cao, K.L.A.; Kautsar, D.B.; Kume, K.; Le Cao, K.A.; Septiani, E.L.; Hirano, T.; Tsunoji, N.; Matsukata, M.; Ogi, T. Preparation of Hierarchical Porous Zeolite Particles with Multiscale Pore Architectures through a Template-Assisted Spray Process for Enhanced Toluene Adsorption Rate. ACS Appl. Mater. Interfaces 2025, 17, 24310–24326. [Google Scholar] [CrossRef]
- Bagherzadeh, S.B.; Haghighi, M. Texture-evolution of copper-based nanocatalyst via hybrid glow discharge plasma-oxalate-precipitation method for hydrogen production from CH3OH/H2O mixture. Appl. Catal. A Gen. 2020, 591, 117402. [Google Scholar] [CrossRef]
- Cruz-Navarro, J.A.; Hernández-García, F.; Sánchez-Mora, A.T.; Moreno-Narváez, M.E.; Reyes-Márquez, V.; Colorado-Peralta, R.; Morales-Morales, D. Copper-Based Metal–Organic Frameworks Applied as Electrocatalysts for the Electroreduction of Carbon Dioxide (CO2ER) to Methane: A Review. Methane 2024, 3, 466–484. [Google Scholar] [CrossRef]
- Kembo, J.P.N.; Wang, J.; Luo, N.; Gao, F.; Yi, H.; Zhao, S.; Zhou, Y.; Tang, X. A review of catalytic oxidation of carbon monoxide over different catalysts with an emphasis on hopcalite catalysts. New J. Chem. 2023, 47, 20222–20247. [Google Scholar] [CrossRef]
- Dehkordi, S.S.S.; Jafari, A.A.; Albadi, J.; Samimi, H.A. Mesoporous epoxidized soybean oil-supported copper-based magnetic nanocatalyst and amberlite-supported azide as a green and efficient catalytic system for 1, 2, 3-triazole synthesis. Mol. Divers. 2023, 27, 177–192. [Google Scholar] [CrossRef]
- Nwosu, U.; Siahrostami, S. Copper-based metal–organic frameworks for CO2 reduction: Selectivity trends, design paradigms, and perspectives. Catal. Sci. Technol. 2023, 13, 3740–3761. [Google Scholar] [CrossRef]
- Elmehrath, S.; Ahsan, K.; Munawar, N.; Alzamly, A.; Nguyen, H.L.; Greish, Y. Antibacterial efficacy of copper-based metal–organic frameworks against Escherichia coli and Lactobacillus. RSC Adv. 2024, 14, 15821–15831. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, K.; Yang, H.; Zhang, F.; Yang, Z.; Dong, Z. Copper-based catalyst for CO2 electrocatalysis to ethylene production. Prog. Chem. 2025, 37, 332–350. [Google Scholar]
- Ebrahimiasl, H.; Azarifar, D. Copper-based Schiff Base Complex Immobilized on Core-shell Fe3O4@ SiO2 as a magnetically recyclable and highly efficient nanocatalyst for green synthesis of 2-amino-4H-chromene derivatives. Appl. Organomet. Chem. 2020, 34, e5359. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Jia, Z.; Jiang, M.; Gong, Z. Study on the catalytic properties of copper-based composite oxides for CO oxidation. Rare Met. Cem. Carbide 2025, 53, 69–76. [Google Scholar]
- Ebrahimi, P.; Kumar, A.; Khraisheh, M. A review of recent advances in water-gas shift catalysis for hydrogen production. Emergent Mater. 2020, 3, 881–917. [Google Scholar] [CrossRef]
- Soni, A.; Kumar, P.; Tomar, V.; Joshi, R.K.; Nemiwal, M. Recent advances in copper oxide nanocatalyzed CC cross-coupling transformations. Results Chem. 2022, 4, 100513. [Google Scholar] [CrossRef]
- Kumar, S.; Muhammad, R.; Amhamed, A.; Oh, H. Unveiling the potential of ingenious copper-based metal-organic frameworks in gas storage and separation. Coord. Chem. Rev. 2025, 522, 216230. [Google Scholar] [CrossRef]
- Haso, H.W.; Dubale, A.A.; Chimdesa, M.A.; Atlabachew, M. High performance copper based metal organic framework for removal of heavy metals from wastewater. Front. Mater. 2022, 9, 840806. [Google Scholar] [CrossRef]
- Akbarpour, T.; Khazaei, A.; Yousefi Seyf, J.; Sarmasti, N. Synthesis of 1-aminoalkyl-2-naphthols derivatives using an engineered copper-based nanomagnetic catalyst (Fe3O4@CQD@Si (OEt)(CH2) 3NH@CC@N3@phenylacetylene@Cu). Appl. Organomet. Chem. 2021, 35, e6361. [Google Scholar] [CrossRef]
- Abouri, M.; Elouardi, M.; Mabrouki, J.; El Belghiti, M.A.; El Hamidi, A. Copper and Copper-Based Nanoparticles for Water Treatment. In Technical Innovation and Modeling in the Biological Sciences; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 93–102. [Google Scholar]
- Gaete, J.; Valdebenito, G.; Moglia, I.; Morales-Verdejo, C.; Aguirre, P.; Fernandes, J.A.; Abarca, G. Copper-based magnetic nanocatalysts for the catalytic transfer hydrogenation of biomass-derived furfural. Appl. Surf. Sci. 2025, 689, 162566. [Google Scholar] [CrossRef]
- Zhang, C.; Ying, Y.; Jia, Y.; Zhao, Z.; Li, Y.; Shi, J. Research Progress on Failure Mechanism of Copper-based Catalysts in Electrocatalytic CO2 Reduction. Copp. Eng. 2024, 4, 30–43. [Google Scholar]
- Qiu, Y.; Ye, H.; Chen, J.; Liu, D.; Gao, Z.; Zhang, Y. Research Progress on Integral Catalysts Based on Reforming Hydrogen Production Technology. Contemp. Chem. Ind. 2024, 53, 1979–1982. [Google Scholar]
- Duan, J.; Yin, M.; Kang, M.; Sun, R.; Xu, Y.; Yan, H. Application of SiO2@TiO2 catalyst support in hydrogen production by methanol reforming. J. Southwest Univ. Sci. Technol. 2024, 39, 36–41. [Google Scholar]
- Bouzayani, B.; Lomba-Fernández, B.; Fdez-Sanromán, A.; Elaoud, S.C.; Sanromán, M.Á. Advancements in Copper-Based Catalysts for Efficient Generation of Reactive Oxygen Species from Peroxymonosulfate. Appl. Sci. 2024, 14, 8075. [Google Scholar] [CrossRef]
- Ahmed, S.; Abdullah, I.; Krisnandi, Y.K. Harnessing Copper’s Potential: A Review of Cu-Based Catalysts for Glycerol Conversion. Bull. Chem. React. Eng. Catal. 2025, 20, 193–220. [Google Scholar] [CrossRef]
- Kouzehli, A.; Kazemeini, M.; Moghaddam, A.A. A robust kinetic modeling of CO2 hydrogenation to methanol over an industrial copper–zinc oxide catalyst based on a single-active site mechanism. Int. J. Hydrogen Energy 2024, 60, 756–768. [Google Scholar] [CrossRef]
- Huang, H.; Na, W.; Gao, W.; Huang, Z. Performance of CO2 Hydrogenation to Methanol from La-Cu/ZnO/ZrO2 Catalyst. J. Funct. Mater. 2024, 55, 9087–9093. [Google Scholar]
- Yan, B.; Cao, J.; Sun, X.; Li, B. Research Progress on CO2-Catalyzed Hydrogenation of Metal-Organic Framework-Supported Metal Catalysts. Sci. China Chem. 2024, 54, 2499–2520. [Google Scholar]
- Sun, G.; Yao, Y.; Chen, Y.; Zhao, K.; Cai, J.; Fu, C.; Lin, J. Research progress on electrocatalytic carbon dioxide reduction by copper-based catalysts. J. Fujian Norm. Univ. Technol. 2024, 42, 15–24. [Google Scholar]
- Liu, Y.; Yang, X.; Ruan, J.; Wu, M.; Cao, Y. Research Progress on Electrocatalytic CO2 Reduction to Produce C+2 Products. Mod. Chem. Ind. 2024, 44, 48–52+59. [Google Scholar]
- Zhang, Z.; Baker, R.; Liu, Z.; Zhou, M.; Deng, G.; Wei, W.; Mao, L.; Li, H.; Jiang, Z. Research progress on carbon dioxide conversion of copper-based photocatalysts. Acta Phys.-Chim. Sin. 2024, 40, 9–10. [Google Scholar] [CrossRef]
- Wang, F.; Guan, D.; Zhang, X.; Wu, C.; Wang, G. Thermodynamic analysis of hydrogen production by methanol water vapor reforming under induction heating. J. Contemp. Chem. Ind. Eng. Res. 2024, 24, 54–56. [Google Scholar]
- Wu, Z.; Liu, D.; Yin, H. Research Progress on Methanol Liquid Phase Reform Catalysts for Hydrogen Production. Chin. Chem. Bull. 2025, 88, 64–72. [Google Scholar]
- Liu, L.; Liu, R.; Liu, Z.; Liu, X.; Zheng, H.; Zeng, L.; Xin, F. Study on the performance of chemical chain methanol oxidation steam reforming process. Chem. React. Eng. Technol. 2025, 41, 238–245. [Google Scholar]
- Du, Z.; Liu, B. Catalytic performance of Cu/SiO2 catalyst for hydrogen production by methanol steam reforming. Energy Chem. Ind. 2025, 46, 15–19. [Google Scholar]
- Jiang, Y.; Deng, L.; Liu, Y.; Liu, H. Application of copper-based catalysts in electrocatalytic CO2 to C2+ products. Mod. Chem. Ind. 2025, 45, 64–68+73. [Google Scholar]
- Zhao, T.; Gao, T.; Yang, Y.; Xu, D.; Han, T.; Deng, B.; Milgen, B. Research status and prospect of CO2 hydrogenation to methanol on copper-based catalysts. Clean Coal Technol. 2025, 31, 104–119. [Google Scholar]
- Kumar, A.; Singh, R.; Sinha, A.S.K. Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 12983–13010. [Google Scholar] [CrossRef]
- Tommasi, M.; Ceriotti, D.; Gramegna, A.; Degerli, S.N.; Ramis, G.; Rossetti, I. Oxidative Steam Reforming of Methanol over Cu-Based Catalysts. Catalysts 2024, 14, 759. [Google Scholar] [CrossRef]
- Nippes, R.P.; Macruz, P.D.; Domingues Gomes, A.; de Souza, M.; Ferreira, B.R.; Rizzo-Domingues, R.C.P.; Ramos, L.P. Effect of Support on Steam Reforming of Ethanol for H2 Production with Copper-Based Catalysts. Processes 2024, 12, 1331. [Google Scholar] [CrossRef]
- Słowik, G.; Rotko, M.; Ryczkowski, J.; Greluk, M. Hydrogen production from methanol steam reforming over Fe-modified Cu/CeO2 catalysts. Molecules 2024, 29, 3963. [Google Scholar] [CrossRef]
- Barberis, L.; Versteeg, C.I.; Meeldijk, J.D.; Stewart, J.A.; Vandegehuchte, B.D.; de Jongh, P.E. K and Na promotion enables high-pressure low-temperature reverse water gas shift over copper-based catalysts. ACS Catal. 2024, 14, 9188–9197. [Google Scholar] [CrossRef]
- Farooq, M.S.; Baig, A.; Wei, Y.; Liu, H.; Zeng, Z.; Shi, Z. A comprehensive analysis of a compact-sized methanol cracking unit for hydrogen production. Int. J. Hydrogen Energy 2024, 87, 822–837. [Google Scholar] [CrossRef]
- Achomo, M.A.; Kumar, A.; Muthukumar, P.; Peela, N.R. Experimental studies on hydrogen production from steam reforming of methanol integrated with metal hydride-based hydrogen purification system. Int. J. Hydrogen Energy 2024, 76, 28–43. [Google Scholar] [CrossRef]
- Qasmi, C.; Mochel, R.; Gautier, V.; Champon, I.; Thomas, S.; Chappaz, A.; Anne-Cécile, R. GBL/BDO pair as a bio-based liquid organic carrier: Kinetic modeling of liquid phase hydrogenation and dehydrogenation over copper-based catalyst. Int. J. Hydrogen Energy 2024, 67, 829–841. [Google Scholar] [CrossRef]
- Mdlovu, N.V.; Lin, K.S.; Yeh, H.P.; François, M.; Hussain, A.; Badshah, S.M. Autothermal reforming of methanol in a microreactor using porous alumina supported CuO/ZnO with CeO2 sol catalysts washcoat. J. Energy Inst. 2025, 119, 101949. [Google Scholar] [CrossRef]
- Zonouz, H.V.; Barzegari, F.; Rezaei, M. Development of CuO/ZnO/Al2O3-hydrotalcite− based catalysts for middle temperature water gas shift reaction: Impact of calcination temperature and residual carbonates. Fuel 2024, 378, 132882. [Google Scholar] [CrossRef]
- Chelvam, K.; Hanafiah, M.M.; Alkhatib, I.I.I.; Ali, S.M.; Vega, L.F. Life cycle assessment on the role of H2S-based hydrogen via H2S-methane reforming for the production of sustainable fuels. Sci. Total Environ. 2025, 958, 177879. [Google Scholar] [CrossRef] [PubMed]
- Gwon, K.; Lee, S.; Kim, Y.; Choi, J.; Kim, S.; Kim, S.-J.; Hong, H.J.; Hwang, Y.; Mori, M.; Lee, D.N. Construction of a bioactive copper-based metal organic framework-embedded dual-crosslinked alginate hydrogel for antimicrobial applications. Int. J. Biol. Macromol. 2023, 242, 124840. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, R.M.; El-Shahat, M.; Abdel-Gawad, H.; Hegazi, B. Efficient phenolic compounds adsorption by immobilization of copper-based metal-organic framework anchored polyacrylonitrile/chitosan beads. Int. J. Biol. Macromol. 2023, 240, 124498. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, C.; Xu, R.; Wang, J.; Chen, Q.; Zhu, Z.; Hu, Q.; Shen, Q.; Shen, J.-W. Copper-based metal–organic frameworks for antitumor application. J. Nanobiotechnol. 2025, 23, 135. [Google Scholar] [CrossRef]
- Li, S.; Huang, L.; Jia, B.; Feng, X.; Cao, Y.; Chen, Y.; Bin, Y. Effect and mechanism of inorganic anions on the adsorption of Cd2+ on two-dimensional copper-based metal–organic framework. Inorg. Chem. Commun. 2024, 159, 111819. [Google Scholar] [CrossRef]
- Morales-Cámara, S.; Toral, V.; Vitorica-Yrezabal, I.J.; Rivadeneyra, A.; Pereira, L.; Rojas, S.; Romero, F.J. Simple fabrication of laser-induced graphene functionalized with a copper-based metal–organic framework and its application in solid-state supercapacitors. J. Mater. Chem. C 2024, 12, 7784–7796. [Google Scholar] [CrossRef]
- Karimi-Nazarabad, M.; Azizi-Toupkanloo, H.; Sajjadizadeh, H.S.; Goharshadi, E.K.; Jorabchi, M.N. Enhanced oxygen evolution of a new copper-based metal-organic framework through the construction of a heterogeneous structure with bismuth oxyiodide. Electrochim. Acta 2024, 491, 144299. [Google Scholar] [CrossRef]
- Sun, M.; Hanif, A.; Wang, T.; Gu, Q.; Shang, J. Ambient temperature NO2 removal by reversible NO2 adsorption on copper-based metal-organic frameworks (MOFs)-derived nanoporous adsorbents. Sep. Purif. Technol. 2023, 314, 123563. [Google Scholar] [CrossRef]
- Jeon, I.J.; Lee, J.S.; Baek, K.W.; Kim, C.-H.; Gong, J.-H.; Jang, W.-J.; Cho, J.S.; Shim, J.-O. Highly dispersed copper-based nanocomposite synthesis via spray pyrolysis: Towards waste-to-hydrogen production through the water-gas shift reaction. J. Mater. Chem. A 2025, 13, 704–720. [Google Scholar] [CrossRef]
- Islam, S.M.S.; Yasmeen, R.; Verma, G.; Tekarli, S.M.; Nesterov, V.N.; Ma, S.; Omary, M.A. A Copper-Based Metal–Organic Framework for Selective Separation of C2 Hydrocarbons from Methane at Ambient Conditions: Experiment and Simulation. Inorg. Chem. 2024, 63, 8664–8673. [Google Scholar] [CrossRef]
- Dawidowicz, R.; Patrascu, M. Methanol compared to other fuels for on-board hydrogen production in thermally balanced membrane reactors with internal recycle. Chem. Eng. Process.-Process Intensif. 2024, 198, 109714. [Google Scholar] [CrossRef]
- Kadeer, K.; Jiang, Y.; Huang, Y.; Lin, Y.; Jin, R.; Yin, C.; Guo, F.; Ichikawa, T.; Li, X.; Zheng, J. Hydrogen generation from coupled methanol steam reforming with metal hydride hydrolysis: Effects of metal catalysts and hydrides. Int. J. Hydrogen Energy 2025, 102, 29–36. [Google Scholar] [CrossRef]
- Caldeira, A.C.R.; Alves, H.O.; da Silva, A.H.M.; Gomes, J.F. Influence of water steam and copper oxidation state on the CO2 hydrogenation to ethanol over copper catalysts. Catal. Today 2024, 443, 114971. [Google Scholar] [CrossRef]
- Ismail, R.; Saad, M.A.H.; Al-Marri, M.J.; Sardar, A.; Mohamed, A.T.; El-Naas, M.; Soliman, A.M.; Benamor, A. Synthesis and evaluation of novel Cu-based adsorbent-containing catalysts for CO2 hydrogenation to methanol and value-added products. J. Environ. Chem. Eng. 2024, 12, 112325. [Google Scholar] [CrossRef]
Support Type | Advantage | Inferior Position | Mechanism of Action |
---|---|---|---|
ZnO | Stabilize Cu+ species and enhance WGSR activity [27] | It is easy to sinter at high temperatures [27] | The Cu–O–Zn interface site was formed to optimize the Cu+/Cu0 dynamic equilibrium [27] |
CeO2 | High oxygen vacancy concentration, inhibition of carbon deposition [28] | The reduced state has low mechanical strength [28] | Oxygen vacancy promotion · OH migration, accelerating CO oxidation [28] |
Al2O3 | High specific surface area, low cost [29] | The strong acidic site exacerbates the carbon deposit [29] | B acid position promotes methanol dehydration to form DME [29] |
SiO2 | The limiting effect inhibits sintering [30] | Weak metal–support interactions [30] | Mesoporous restriction of Cu particle migration [30] |
zeolite | The molecular sieve effect blocks poisons [31] | Microporous diffusion limitation [31] | The pore confines Cu particles, which physically block small molecule poisons such as H2S [31] |
Tactics | Specific Methods | Effects/Benefits |
---|---|---|
Alloying strategy | Cu-Ni and Cu-Co bimetallic nanoparticles were introduced to regulate the d-band center through electronic synergy. | Inhibition of CO adsorption, carbon deposition rate reduced by 50%. The H2 yield was increased to 3.5 mol/(g_cat·min), and the CO selectivity was <0.5%. |
Co-catalyst doping | Doped with ZnO and CeO2 nanoparticles (particle size 5–8 nm) to form a strong Cu-ZnO/CeO2 interface interaction. | Stabilize Cu+ species, reduce methanol dehydrogenation barrier by 0.3 eV. The CO oxidation rate was increased by 12%, and the CO selectivity was <0.3%. |
Multi-level pore carrier design | MOF-derived hierarchical pore carbon (mesoporous 3–5 nm, macroporous 50–100 nm) or wood template oriented macroporous structure. | The methanol diffusion flux increased to 5.2 × 10−6 mol/(m2·s). After 500 h, the Cu particle size only increased by 0.8 nm, and the carbon deposition rate was 0.02 g/(g_cat·h). |
Theoretical exploration and model support | DFT calculates the charge transfer at the Cu–ZnO interface. MD simulated the mesoporous confinement effect; machine learning filters the quaternary system. | It was revealed that the H2O dissociation barrier decreased from 1.4 eV to 0.9 eV. The ZnO/MgO molar ratio (2:1) was predicted to optimize the carbon deposition inhibition to 0.03 g/(g_cat·h). |
Technology | Specific Methods | Effects/Benefits |
---|---|---|
Green synthesis technology | Biomass carrier (rice husk ash mesoporous SiO2) [86] | 88% dispersion, 70% cost reduction [86] |
Intelligent regeneration technology | Temperature-sensitive polymer PNIPAM coating [88] | The start–stop stability is increased by three times [88] |
Innovation in the recycling process | Weak acid leaching (0.5 M citric acid) [89] | Activity recovery rate 92% [89] |
Catalyst System | Preparation Method | Conditions (°C/GHSV) | H2 Yield (mol/g·min) | CO Selectivity (%) | Stability (h) |
---|---|---|---|---|---|
Cu/ZnO/Al2O3 | Co-precipitation | 250 /5000 h−1 | 3.0 | 0.8 | 500 |
Cu/ZSM-5 | Ion exchange | 280 /8000 h−1 | 2.8 | 1.2 | 400 |
CuSiO2 (core-shell) | Microemulsion | 300 /6000 h−1 | 3.2 | 0.5 | 1200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, S.; Dou, X.; Zhao, W.; Bai, S.; Wan, B.; Wang, T.; Yang, J.-H. A Review on the Design Strategies of Copper-Based Catalysts for Enhanced Activity and Stability in Methanol Reforming to Hydrogen. Nanomaterials 2025, 15, 1118. https://doi.org/10.3390/nano15141118
Pang S, Dou X, Zhao W, Bai S, Wan B, Wang T, Yang J-H. A Review on the Design Strategies of Copper-Based Catalysts for Enhanced Activity and Stability in Methanol Reforming to Hydrogen. Nanomaterials. 2025; 15(14):1118. https://doi.org/10.3390/nano15141118
Chicago/Turabian StylePang, Shuang, Xueying Dou, Wei Zhao, Suli Bai, Bo Wan, Tiaoxia Wang, and Jing-He Yang. 2025. "A Review on the Design Strategies of Copper-Based Catalysts for Enhanced Activity and Stability in Methanol Reforming to Hydrogen" Nanomaterials 15, no. 14: 1118. https://doi.org/10.3390/nano15141118
APA StylePang, S., Dou, X., Zhao, W., Bai, S., Wan, B., Wang, T., & Yang, J.-H. (2025). A Review on the Design Strategies of Copper-Based Catalysts for Enhanced Activity and Stability in Methanol Reforming to Hydrogen. Nanomaterials, 15(14), 1118. https://doi.org/10.3390/nano15141118