Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Fe-ZIF-8 and Fe-ZIF-67
2.2. Characterization Instruments
2.3. Adsorption Experiments
2.4. Adsorption Isotherms
2.5. Langmuir Isotherm
2.6. Freundlich Isotherm
2.7. Temkin Isotherm
2.8. Dubinin–Radushkevich (D-R) Isotherm Model
2.9. Kinetic Study
2.10. Pseudo-First-Order Kinetic Model
2.11. Pseudo-Second-Order Kinetic Model
2.12. Elovich Kinetic Model
2.13. Analysis of Thermodynamic
3. Results and Discussions
3.1. Characterization
3.2. Adsorption Kinetics
3.3. The Isotherm of Adsorption
3.4. Thermodynamic Analysis
3.5. Effect of Parameters on MG Adsorption
3.5.1. Effect of pH Value on Adsorption Capacity
3.5.2. Zero Charge Point pH0 of the Adsorbents
3.5.3. Effect of Co-Existing Ions
3.6. Adsorption Mechanism
3.7. Reusability of Adsorbent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ALOthman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Anbari, A.P.; Delcheh, S.R.; Kashif, M.; Ranjbari, A.; Akbari, M.K.; Heynderickx, P.M.; Amini, M.; Zhuiykov, S.; Verpoort, F. Recent Progress on Core-Shell Zeolitic Imidazole Frameworks: A Review of Synthesis and Applications. Comments Inorg. Chem. 2024, 45, 361–401. [Google Scholar] [CrossRef]
- Aribi, K.; Ghelamallah, M.; Fertout, R.I.; Merzeg, F.A.; Djermoune, A. Catalytic performance of Ni-Doped Co/La2O3 for degradation of malachite green by hetero-Fenton-like oxidation and sonocatalysis processes. J. Mol. Struct. 2025, 1332, 141612. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; He, B.-l.; Bian, Y.; Zhang, Y.; Feng, X.-S. Malachite green and related substances in environmental samples: Updates on pretreatment and analysis methods. J. Environ. Chem. Eng. 2024, 12, 113812. [Google Scholar] [CrossRef]
- Malvestiti, J.A.; Camparotto, N.G.; Cavalcante, R.P.; Prediger, P.; Dantas, R.F. Comparative study of the efficiency of conventional and green-prepared iron nanoparticles for catalytic ozonation. Catal. Today 2024, 430, 114521. [Google Scholar] [CrossRef]
- Kaveh, R.; Zare, H.; Bagherzadeh, M. Magnetic quaternized alumina nanotube with fast and enhanced lead (II) and malachite green adsorption: Multivariate optimization, kinetic and isotherm study. Res. Chem. Intermed. 2025, 51, 1681–1707. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Aamer, N.; Abdallah, H.M.; López-Maldonado, E.A.; Mohamed, Y.M.A.; El Nazer, H.A.; Mohamed, R.R. Novel high-efficient adsorbent based on modified gelatin/montmorillonite nanocomposite for removal of malachite green dye. Sci. Rep. 2024, 14, 1228. [Google Scholar] [CrossRef]
- Xia, Y.-F.; Yuan, H.-Q.; Qiao, C.; Li, W.; Wang, R.; Chen, P.; Li, Y.-X.; Bao, G.-M. Multifunctional Eu3+-MOF for simultaneous quantification of malachite green and leuco-malachite green and efficient adsorption of malachite green. J. Hazard. Mater. 2024, 465, 133386. [Google Scholar] [CrossRef]
- Yang, D.; Li, L.; Xu, W.; Jia, Z.; Lei, J.; Liu, J. Bamboo nanocellulose derived carbon loaded bismuth oxide: An effective nanocomposite for the solar photocatalytic degradation of malachite green. Colloids Surf. A Physicochem. Eng. Asp. 2025, 711, 136315. [Google Scholar] [CrossRef]
- Patra, R.; Dash, P.; Panda, P.K.; Yang, P.-C. A Breakthrough in Photocatalytic Wastewater Treatment: The Incredible Potential of g-C3N4/Titanate Perovskite-Based Nanocomposites. Nanomaterials 2023, 13, 2173. [Google Scholar] [CrossRef]
- Hammond, K.D.; Conner, W.C. Chapter One—Analysis of Catalyst Surface Structure by Physical Sorption. In Advances in Catalysis; Gates, B.C., Jentoft, F.C., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 56, pp. 1–101. [Google Scholar]
- Ghanadzadeh Gilani, A.; Rahmdel, S.; Gilani, N.; Pourvahabi, A.; Hasseine, A.; Verpoort, F. Liquid-Liquid Equilibria of the (Hexane + Alcohol + Deep Eutectic Solvents) Systems: Measurement and Correlation. J. Chem. Eng. Data 2025, 51, 1681–1707. [Google Scholar] [CrossRef]
- Anbari, A.P.; Delcheh, S.R.; Heynderickx, P.M.; Chaemcheun, S.; Zhuiykov, S.; Verpoort, F. Green Approach for Synthesizing Copper-Containing ZIFs as Efficient Catalysts for Click Chemistry. Catalysts 2023, 13, 1003. [Google Scholar] [CrossRef]
- Feng, S.; Duan, H.; Tan, H.; Hu, F.; Liu, C.; Wang, Y.; Li, Z.; Cai, L.; Cao, Y.; Wang, C.; et al. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nat. Commun. 2023, 14, 7063. [Google Scholar] [CrossRef] [PubMed]
- Sarma, G.K.; Sen Gupta, S.; Bhattacharyya, K.G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review. Environ. Sci. Pollut. Res. Int. 2019, 26, 6245–6278. [Google Scholar] [CrossRef]
- Basu, S.; Ghosh, G.; Saha, S. Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Saf. Environ. Prot. 2018, 117, 125–142. [Google Scholar] [CrossRef]
- Togue Kamga, F. Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl. Water Sci. 2018, 9, 1. [Google Scholar] [CrossRef]
- Lyklema, J. (Ed.) 1—Adsorption at the Solid-Gas Interface. In Fundamentals of Interface and Colloid Science; Academic Press: Cambridge, MA, USA, 1995; Volume 2, pp. 1-1–1-118. [Google Scholar]
- Ali, N.S.; Harharah, H.N.; Salih, I.K.; Cata Saady, N.M.; Zendehboudi, S.; Albayati, T.M. Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater. Sci. Rep. 2023, 13, 9837. [Google Scholar] [CrossRef]
- Julbe, A. Chapter 6—Zeolite Membranes—Synthesis, Characterization and Application. In Studies in Surface Science and Catalysis; Čejka, J., van Bekkum, H., Corma, A., Schüth, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 168, pp. 181–219. [Google Scholar]
- Pourhakkak, P.; Taghizadeh, A.; Taghizadeh, M.; Ghaedi, M.; Haghdoust, S. Chapter 1—Fundamentals of adsorption technology. In Interface Science and Technology; Ghaedi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 33, pp. 1–70. [Google Scholar]
- Ranjbari, A. In-Depth Investigation and Versatile Kinetic Modeling of Adsorption and Degradation Processes in Liquid and Gas Phase Photocatalytic Environmental Remediation. Ph.D Thesis, Ghent University, Ghent, Belgium, 2024. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Riahi, K.; Chaabane, S.; Thayer, B.B. A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J. Saudi Chem. Soc. 2017, 21, S143–S152. [Google Scholar] [CrossRef]
- Ranjbari, A.; Anbari, A.P.; Kashif, M.; Adhikary, K.K.; Kim, K.-H.; Heynderickx, P.M. The adsorption/photocatalytic degradation kinetics of oxygen vacancy-enriched ZnO in relation to surface functional groups of cationic/anionic dyes. Chem. Eng. J. 2025, 505, 159526. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Prelot, B. Chapter 7—Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Bonelli, B., Freyria, F.S., Rossetti, I., Sethi, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar]
- Ranjbari, A.; Adhikary, K.K.; Kashif, M.; Anbari, A.P.; Siddhartha, T.R.; Kim, D.; Yoon, S.; Yoon, J.; Heynderickx, P.M. Comparative photocatalytic degradation of cationic rhodamine B and anionic bromocresol green using reduced ZnO: A detailed kinetic modeling approach. Chemosphere 2025, 371, 144052. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Cheung, C.W.; Porter, J.F.; McKay, G. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J. Chem. Technol. Biotechnol. 2000, 75, 963–970. [Google Scholar] [CrossRef]
- Ghanadzadeh Gilani, A.; Akbarnia Dafrazi, A.; Rahmdel Delcheh, S.; Verpoort, F. Cyclopentanone–Alkanediol Systems: Experimental and Theoretical Study on Hydrogen-Bond Complex Formation. Ind. Eng. Chem. Res. 2020, 59, 18318–18334. [Google Scholar] [CrossRef]
- Manjunath, K.; Kaushik, S.C. Second law thermodynamic study of heat exchangers: A review. Renew. Sustain. Energy Rev. 2014, 40, 348–374. [Google Scholar] [CrossRef]
- Alamgir; Talha, K.; Wang, B.; Liu, J.-H.; Ullah, R.; Feng, F.; Yu, J.; Chen, S.; Li, J.-R. Effective adsorption of metronidazole antibiotic from water with a stable Zr(IV)-MOFs: Insights from DFT, kinetics and thermodynamics studies. J. Environ. Chem. Eng. 2020, 8, 103642. [Google Scholar] [CrossRef]
- Khabazipour, M.; Anbia, M. Process optimization and adsorption modeling using hierarchical ZIF-8 modified with Lanthanum and Copper for sulfate uptake from aqueous solution: Kinetic, Isotherm and Thermodynamic studies. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2401–2424. [Google Scholar] [CrossRef]
- He, J.; Hu, Z.; Zhao, J.; Liu, P.; Lv, X.; Tian, W.; Wang, C.; Tan, S.; Ji, J. Ni-decorated Fe-/N- co-doped carbon anchored on porous cobalt oxide nanowires arrays for efficient electrocatalytic oxygen evolution. Chem. Eng. Sci. 2021, 243, 116774. [Google Scholar] [CrossRef]
- Luo, E.; Wang, C.; Li, Y.; Wang, X.; Gong, L.; Zhao, T.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Res. 2020, 13, 2420–2426. [Google Scholar] [CrossRef]
- Mphuthi, L.E.; Erasmus, E.; Langner, E.H.G. Metal Exchange of ZIF-8 and ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance. ACS Omega 2021, 6, 31632–31645. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, X.; Ji, Y.; Chen, D. Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies. J. Hazard. Mater. 2023, 441, 129912. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chang, K.; Liu, Q.; Xie, Y.; Song, Z.; Zheng, Z.; Kuang, Q. Fe–N–C nanostick derived from 1D Fe-ZIFs for electrocatalytic oxygen reduction. Chin. J. Struct. Chem. 2023, 42, 100097. [Google Scholar] [CrossRef]
- Tao, X.; Lu, R.; Ni, L.; Gridin, V.; Al-Hilfi, S.H.; Qiu, Z.; Zhao, Y.; Kramm, U.I.; Zhou, Y.; Müllen, K. Facilitating the acidic oxygen reduction of Fe–N–C catalysts by fluorine-doping. Mater. Horiz. 2022, 9, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Shao, J.; Holze, R.; Chen, Z.; Yun, Y.; Qu, Q.; Zheng, H. Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. J. Mater. Chem. A 2018, 6, 3659–3666. [Google Scholar] [CrossRef]
- Karaseva, A.A.; Filippov, D.V.; Vashurin, A.S. Synthesis of Fe-ZIF and Adsorption of Zinc and Copper Ions on Its Surface. Russ. J. Inorg. Chem. 2023, 68, 939–945. [Google Scholar] [CrossRef]
- Zou, W.; Li, T.; Yao, Z.; Fan, M.; Ma, T. A comprehensive study on ZIF-8/SiOx/ZIF-8 core-shell composite as high-stable anode material for lithium-ion batteries. J. Electroanal. Chem. 2022, 912, 116258. [Google Scholar] [CrossRef]
- Dong, T.; Deng, T.; Chu, X.; Qin, T.; Wang, H.; Wang, Z.; Zhang, W.; Zheng, W. Carbon intermediate boosted Fe-ZIF derived α-Fe(2)O(3) as a high-performance negative electrode for supercapacitors. Nanotechnology 2020, 31, 135403. [Google Scholar] [CrossRef]
- Noh, K.; Lee, J.; Kim, J. Compositions and Structures of Zeolitic Imidazolate Frameworks. Isr. J. Chem. 2018, 58, 1075–1088. [Google Scholar] [CrossRef]
- Li, Y.; Jia, B.; Fan, Y.; Zhu, K.; Li, G.; Su, C.-Y. Bimetallic Zeolitic Imidazolite Framework Derived Carbon Nanotubes Embedded with Co Nanoparticles for Efficient Bifunctional Oxygen Electrocatalyst. Adv. Energy Mater. 2018, 8, 1702048. [Google Scholar] [CrossRef]
- Anbari, A.P.; Ranjbari, A.; Kashif, M.; Delcheh, S.R.; Siddhartha, T.R.; Zhuiykov, S.; Heynderickx, P.M.; Verpoort, F. Solvent-Free Synthesis of Pd-Modified Zeolitic Imidazolate Framework Nanocomposites for Competitive Arylation and Carbon–Carbon Coupling Reactions. Appl. Organomet. Chem. 2025, 39, e70200. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Liu, R. Freestanding 1D Hierarchical Porous Fe-N-Doped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries. Energy Technol. 2019, 7, 1800790. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Guo, C.; Gao, X.; Gong, C.; Wang, Y.; Liu, B.; Li, X.; Gurzadyan, G.G.; Sun, L. Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect. J. Mater. Chem. A 2018, 6, 4768–4775. [Google Scholar] [CrossRef]
- Yang, F.; Mu, H.; Wang, C.; Xiang, L.; Yao, K.X.; Liu, L.; Yang, Y.; Han, Y.; Li, Y.; Pan, Y. Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C3H6/C3H8 Separation. Chem. Mater. 2018, 30, 3467–3473. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chang, H.-A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 2015, 139, 624–631. [Google Scholar] [CrossRef]
- Haque, E.; Jun, J.W.; Jhung, S.H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 2011, 185, 507–511. [Google Scholar] [CrossRef]
Samples | Co (%wt) | Fe (%wt) | Zn (%wt) | RSD (%) |
---|---|---|---|---|
Fe-ZIF-8 | - | 3.4 | 36.4 | 0.2815 |
Fe-ZIF-67 | 36.5 | 3.5 | - | 0.2324 |
Sample | BET (m2 g−1) | Langmuir (m2 g−1) | Pore Size (nm) | Vt (cm3·g−1, at p/p0 = 0.95) |
---|---|---|---|---|
Fe-ZIF-8 | 855.5 ± 0.1 | 967.8 | 1.975 | 0.42 ± 0.01 |
Fe-ZIF-67 | 927.6 ± 0.1 | 1012.1 | 2.099 | 0.49 ± 0.01 |
Sample | (mg g−1) | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | Intraparticle Diffusion Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg g−1) | (min−1) | (mg g−1) | (g mg−1 min−1) | (mg g−1 min−0.5) | c | |||||
Fe-ZIF-67 | 65.0 ± 0.5 | 34.1 ± 0.2 | 0.00004 | 0.98 | 63.2 ± 0.4 | 0.0012 | 0.99 | 0.252 | 265.31 ± 0.3 | 0.988 |
Fe-ZIF-8 | 75.0 ± 0.5 | 66.2 ± 0.1 | 0.00005 | 0.86 | 74.1 ± 0.5 | 0.0015 | 0.99 | 0.204 | 235.88 ± 0.2 | 0.975 |
Adsorbent | qmax (mg·g−1) |
---|---|
Pure ZIF-8 | 310 ± 8 |
Fe-ZIF-8 | 495 ± 3 |
Pure ZIF-67 | 345 ± 7 |
Fe-ZIF-67 | 552 ± 4 |
Samples | T (K) | Langmuir Isotherm | Freundlich Isotherm | |||||
---|---|---|---|---|---|---|---|---|
qm (mg g−1) | KL (L mg−1) | R2 | Kf (mg(1–−1/n) L(1/n) g−1) | n | R2 | |||
Fe-ZIF-67 | 298.15 | 454.5 ± 0.7 | 0.10 | 0.985 | 32.0 ± 0.4 | 1.352 | 0.992 | |
308.15 | 476.1 ± 0.8 | 0.17 | 0.986 | 43.3 ± 0.5 | 1.354 | 0.981 | ||
318.15 | 666.6 ± 0.6 | 0.18 | 0.964 | 53.9 ± 0.4 | 1.274 | 0.983 | ||
Fe-ZIF-8 | 298.15 | 625.0 ± 0.7 | 0.04 | 0.998 | 28.7 ± 0.5 | 1.309 | 0.993 | |
308.15 | 796.2 ± 0.6 | 0.04 | 0.998 | 38.6 ± 0.4 | 1.308 | 0.989 | ||
318.15 | 1428.5 ± 0.8 | 0.03 | 0.964 | 52.9 ± 0.4 | 1.251 | 0.999 | ||
Samples | T (K) | Temkin isotherm | D-R isotherm model | |||||
BT (J mol−1) | KT (L g−1) | R2 | qm (mg g−1) | (mol2 kJ−2) | E (kJ mol−1) | R2 | ||
Fe-ZIF-67 | 298.15 | 104.1 ± 0.3 | 0.74 | 0.966 | 240.3 ± 0.7 | 1.41 × 10−6 | 595.8 | 0.974 |
308.15 | 119.9 ± 0.4 | 0.71 | 0.993 | 296.1 ± 0.5 | 1.06 × 10−6 | 687.0 | 0.962 | |
318.15 | 164.9 ± 0.2 | 1.06 | 0.998 | 456.8 ± 0.6 | 9.99 × 10−7 | 707.4 | 0.969 | |
Fe-ZIF-8 | 298.15 | 101.8 ± 0.5 | 0.71 | 0.960 | 233.0 ± 0.8 | 1.45 × 10−6 | 587.9 | 0.985 |
308.15 | 123.1 ± 0.3 | 0.85 | 0.955 | 269.5 ± 0.6 | 9.43 × 10−7 | 728.1 | 0.945 | |
318.15 | 176.4 ± 0.2 | 0.98 | 0.987 | 461.1 ± 0.7 | 9.28 × 10−6 | 734.1 | 0.932 |
Samples | T (K) | R2 | |||
---|---|---|---|---|---|
Fe-ZIF-67 | 298.15 | 4994.656 | 15.691 | 36.075 | 0.984 |
308.15 | 4443.977 | ||||
318.15 | 4281.540 | ||||
Fe-ZIF-8 | 298.15 | 7960.350 | 6.720 | 4.145 | 0.982 |
308.15 | 7986.499 | ||||
318.15 | 8043.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anbari, A.P.; Delcheh, S.R.; Kashif, M.; Ranjbari, A.; Karbalaei Akbari, M.; Zhuiykov, S.; Heynderickx, P.M.; Verpoort, F. Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics. Nanomaterials 2025, 15, 1097. https://doi.org/10.3390/nano15141097
Anbari AP, Delcheh SR, Kashif M, Ranjbari A, Karbalaei Akbari M, Zhuiykov S, Heynderickx PM, Verpoort F. Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics. Nanomaterials. 2025; 15(14):1097. https://doi.org/10.3390/nano15141097
Chicago/Turabian StyleAnbari, Alireza Pourvahabi, Shima Rahmdel Delcheh, Muhammad Kashif, Alireza Ranjbari, Mohammad Karbalaei Akbari, Serge Zhuiykov, Philippe M. Heynderickx, and Francis Verpoort. 2025. "Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics" Nanomaterials 15, no. 14: 1097. https://doi.org/10.3390/nano15141097
APA StyleAnbari, A. P., Delcheh, S. R., Kashif, M., Ranjbari, A., Karbalaei Akbari, M., Zhuiykov, S., Heynderickx, P. M., & Verpoort, F. (2025). Engineering Fe-Modified Zeolitic Imidazolate Frameworks (Fe-ZIF-8 and Fe-ZIF-67) via In Situ Thermal Synthesis for Enhanced Adsorption of Malachite Green from Aqueous Solutions: A Comprehensive Study of Isotherms, Kinetics, and Thermodynamics. Nanomaterials, 15(14), 1097. https://doi.org/10.3390/nano15141097