ZSM-5-Confined Fe-O4 Nanozymes Enable the Identification of Intrinsic Active Sites in POD-like Reactions
Abstract
1. Introduction
2. Experimental Section
2.1. Nanozyme Preparation
2.2. Characterization of Nanozymes
2.3. Catalytic Evaluation
3. Results and Discussion
3.1. The Structure of Nanozymes
3.2. Nanozymes Activity
3.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotech. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Cao, X.; Zhu, C.; Hong, Q.; Chen, X.; Wang, K.; Shen, Y.; Liu, S.; Zhang, Y. Insight into Iron Leaching from an Ascorbate-Oxidase-like Fe−N−C Nanozyme and Oxygen Reduction Selectivity. Angew. Chem. Int. Ed. 2023, 62, e202302463. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Du, W.; Dong, J.; Che, R.; Kong, F.; Cheng, W.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Dai, Y.; Lin, X.; Song, Y.; Pang, Y.; Chen, R.; Xiao, R. Specific and magnetic covalent organic framework confined Os nanoclusterzyme for interference-free and ultrasensitive biosensing. Adv. Funct. Mater. 2024, 34, 2400875. [Google Scholar] [CrossRef]
- He, Y.; Chen, X.; Zhang, Y.; Wang, Y.; Cui, M.; Li, G.; Liu, X.; Fan, H. Magnetoresponsive nanozyme: Magnetic stimulation on the nanozyme activity of iron oxide nanoparticles. Sci. China Life Sci. 2022, 65, 184–192. [Google Scholar] [CrossRef]
- Feng, K.; Wang, G.; Wang, S.; Ma, J.; Wu, H.; Ma, M.; Zhang, Y. Breaking the pH limitation of nanozymes: Mechanisms, methods, and applications. Adv. Mater. 2024, 36, 2401619. [Google Scholar] [CrossRef]
- Li, C.; Hang, T.; Jin, Y. Atomically Fe-anchored MOF-on-MOF nanozyme with differential signal amplification for ultrasensitive cathodic electrochemiluminescence immunoassay. Exploration 2023, 3, 20220151. [Google Scholar] [CrossRef]
- Li, X.; Ding, S.; Lyu, Z.; Tieu, P.; Wang, M.; Feng, Z.; Pan, X.; Zhou, Y.; Niu, X.; Du, D.; et al. Single-atomic iron doped carbon dots with both photoluminescence and oxidase-like activity. Small 2022, 18, 2203001. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; An, S.; Yin, W.; Huang, J.; Jiang, X. Nanozyme-based regulation of cellular metabolism and their applications. Adv. Mater. 2024, 36, 2301810. [Google Scholar] [CrossRef]
- Gao, L.; Fan, K.; Yan, X. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 2017, 7, 3207. [Google Scholar] [CrossRef]
- Fu, R.; Ma, Z.; Zhao, H.; Jin, H.; Tang, Y.; He, T.; Ding, Y.; Zhang, J.; Ye, D. Research progress in iron-based nanozymes: Catalytic mechanisms, classification, and biomedical applications. Anal. Chem. 2023, 95, 10844–10858. [Google Scholar] [CrossRef] [PubMed]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Chen, Y.; Liu, Z.; Huang, C.; Li, Y.; Kong, D.; Shen, W.; Tang, S. Modification and application of Fe3O4 nanozymes in analytical chemistry: A review. Chin. Chem. Lett. 2023, 34, 107820. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Hou, Y.; Wang, X.; Xue, C.; Li, W.; Cai, K.; Zhao, Y.; Luo, Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nano. Horiz. 2020, 5, 202–217. [Google Scholar] [CrossRef]
- Wu, K.; Zhao, X.; Chen, M.; Zhang, H.; Liu, Z.; Zhang, X.; Zhu, X.; Liu, Q. Synthesis of well-dispersed Fe3O4 nanoparticles loaded on montmorillonite and sensitive colorimetric detection of H2O2 based on its peroxidase-like activity. N. J. Chem. 2018, 42, 9578–9587. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254. [Google Scholar] [CrossRef]
- Gumpelmayer, M.; Nguyen, M.; Molnár, G.; Bousseksou, A.; Meunier, B.; Robert, A. Magnetite Fe3O4 has no intrinsic peroxidase activity, and is probably not involved in Alzheimer’s oxidative stress. Angew. Chem. Int. Ed. 2018, 57, 14758–14763. [Google Scholar] [CrossRef]
- Li, J.; Cai, X.; Jiang, P.; Wang, H.; Zhang, S.; Sun, T.; Chen, C.; Fan, K. Co-based nanozymatic profiling: Advances spanning chemistry, biomedical, and environmental sciences. Adv. Mater. 2024, 36, 2307337. [Google Scholar] [CrossRef]
- Yang, Q.; Mao, Y.; Liu, Q.; He, W. Metal nanozymes with multiple catalytic activities: Regulating strategies and biological applications. Rare Met. 2023, 42, 2928–2948. [Google Scholar] [CrossRef]
- Zhang, Y.; Hess, H. Toward rational design of high-efficiency enzyme cascades. ACS Catal. 2017, 7, 6018–6027. [Google Scholar] [CrossRef]
- Xue, T.; Jiang, S.; Qu, Y.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C.-Y.; Kaner, R.; Huang, Y.; Duan, X. Graphene supported hemin as a highly active biomimetic catalyst. Angew. Chem. Int. Ed. 2012, 51, 3822–3825. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Zhou, Y.; Ren, Y.; Feng, D.; Shang, J.; Ge, H.; Gao, J.; Yang, J.; Qin, Y. Insights into the effect of substrate adsorption behavior over heme-like Fe1/AC single-atom catalyst. Nano Res. 2022, 15, 5970–5976. [Google Scholar] [CrossRef]
- Ma, Y.; Ge, H.; Yi, S.; Yang, M.; Feng, D.; Ren, Y.; Gao, J.; Qin, Y. Understanding the intrinsic synergistic mechanism between Pt-O-Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Sci. China Chem. 2022, 65, 2596–2603. [Google Scholar] [CrossRef]
- Oshima, K.; Konishi, E.; Watanabe, R.; Fukuhara, C.; Kishida, M. Influence of sulfur contamination on ethylene aromatization over a Ga-modified MFI-type zeolite. Chem. Eng. J. 2024, 480, 148241. [Google Scholar] [CrossRef]
- Qin, Z.; Lakiss, L.; Gilson, J.-P.; Thomas, K.; Goupil, J.-M.; Fernandez, C.; Valtchev, V. Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure, acidity, and catalytic activity. Chem. Mater. 2013, 25, 2759–2766. [Google Scholar] [CrossRef]
- Abbasizadeh, S.; Karimzadeh, R. Influence of various aluminum distributions on modification of ZSM-5 zeolite framework with cobalt ions in alkane catalytic cracking. Res. Chem. Intermed. 2019, 45, 955–972. [Google Scholar] [CrossRef]
- Wang, K.; Ge, H.; Qin, Y. Hollow Zeolites-Confined Isolated (ZnOH)+ Enable High Selectivity and Stability for Methanol to Aromatics. Chemcatchem 2022, 14, e202200022. [Google Scholar] [CrossRef]
- Yin, Y.; Shi, L.; Li, W.; Li, X.; Wu, H.; Ao, Z.; Tian, W.; Liu, S.; Wang, S.; Sun, H. Boosting Fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400. [Google Scholar] [CrossRef]
- Yu, T.; Li, Z.; Lin, L.; Chu, S.; Su, Y.; Song, W.; Wang, A.; Weckhuysen, B.; Luo, W. Highly selective oxidation of methane into methanol over Cu-promoted monomeric Fe/ZSM-5. ACS Catal. 2021, 11, 6684–6691. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, H.; Liu, C.; Zheng, L.; Liu, C.; Wang, J.O.; Liu, S.; Han, Y.; Gu, L.; Qian, J. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653. [Google Scholar] [CrossRef]
- El-Malki, E.-M.; Van Santen, R.; Sachtler, W. Sachtler, Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites. J. Phys. Chem. B 1999, 103, 4611–4622. [Google Scholar] [CrossRef]
- Cha, J.; Lee, T.; Lee, Y.-J.; Jeong, H.; Jo, Y.S.; Kim, Y.; Nam, S.W.; Han, J.; Lee, K.B.; Yoon, C.W. Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition. Appl. Catal. B Environ. 2021, 283, 119627. [Google Scholar] [CrossRef]
- Ma, Y.; Ding, J.; Yang, L.; Wu, X.; Gao, Y.; Ran, R.; Weng, D. Flexible Al Coordination with H2O Explaining the Deviation of Strong Acid Amount from the Framework Al Content in Al-Rich SSZ-13. J. Phys. Chem. C 2023, 127, 16598–16606. [Google Scholar] [CrossRef]
- Bian, K.; Zhang, A.; Yang, H.; Fan, B.; Xu, S.; Guo, X.; Song, C. Synthesis and characterization of Fe-substituted ZSM-5 zeolite and its catalytic performance for alkylation of benzene with dilute ethylene. Ind. Eng. Chem. Res. 2020, 59, 22413–22421. [Google Scholar] [CrossRef]
- Ates, A.; Reitzmann, A.; Waters, G. Surface oxygen generated upon N2O activation on iron containing ZSM-5 type zeolites with different elemental composition. Appl. Catal. B Environ. 2012, 119, 329–339. [Google Scholar] [CrossRef]
- Shang, S.; Li, W.; Zhou, A.; Zhang, J.; Yang, H.; Zhang, A.; Guo, X. Fe-Substituted Pt/HZSM-48 for superior selectivity of i-C12 in n-dodecane hydroisomerization. Ind. Eng. Chem. Res. 2022, 61, 1056–1065. [Google Scholar] [CrossRef]
- Lobree, L.; Hwang, I.-C.; Reimer, J.; Bell, A. Investigations of the State of Fe in H–ZSM-5. J. Catal. 1999, 186, 242–253. [Google Scholar] [CrossRef]
- Ates, A.; Hardacre, C.; Goguet, A. Oxidative dehydrogenation of propane with N2O over Fe-ZSM-5 and Fe–SiO2: Influence of the iron species and acid sites. Appl. Catal. A Gen. 2012, 441, 30–41. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Wu, P.; Hou, Z.; Fei, J.; Zheng, X. Synthesis of dimethyl ether via methanol dehydration over combined Al2O3-HZSM-5 solid acids. Chin. J. Catal. 2010, 31, 987–992. [Google Scholar] [CrossRef]
- Gao, P.; Li, Z.; Feng, L.; Liu, Y.; Du, Z.; Zhang, L. Construction of novel MWCNTs/Bi4O5I2 nanosheets with enhanced adsorption and photocatalytic performance for the degradation of tetracycline: Efficiency, mechanism and regeneration. Chem. Eng. J. 2022, 429, 132398. [Google Scholar] [CrossRef]
- Wan, K.; Jiang, B.; Tan, T.; Wang, H.; Liang, M. Surface-Mediated Production of Complexed •OH Radicals and Fe=O Species as a Mechanism for Iron Oxide Peroxidase-Like Nanozymes. Small 2022, 18, 2204372. [Google Scholar] [CrossRef] [PubMed]
- Romero-Sáez, M.; Divakar, D.; Aranzabal, A.; González-Velasco, J.R.; González-Marcos, J.A. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Appl. Catal. B-Environ. 2016, 180, 210–218. [Google Scholar] [CrossRef]
- Koekkoek, A.J.J.; Xin, H.C.; Yang, Q.H.; Li, C.; Hensen, E.J.M. Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol. Micropor. Mesopor. Mat. 2011, 145, 172–181. [Google Scholar] [CrossRef]
- Marturano, P.; Drozdová, L.; Pirngruber, G.D.; Kogelbauer, A.; Prins, R. The mechanism of formation of the Fe species in Fe/ZSM-5 prepared by CVD. Phys. Chem. Chem. Phys. 2001, 3, 5585–5595. [Google Scholar] [CrossRef]
Nanozyme | Content a (wt%) | Acidity by Strength b (mmol∙g−1) | ||
---|---|---|---|---|
Strong Acidity | Medium Acidity | Weak and Physical Acidity | ||
porousZSM-5 | 0.92 | 0.97 | 1.10 | |
Fe(0.1)-porousZSM-5 | 0.11 | 0.15 | 1.24 | 0.91 |
Fe(0.2)-porousZSM-5 | 0.21 | 0 | 1.11 | 0.85 |
Fe(0.4)-porousZSM-5 | 0.40 | 0 | 0.91 | 0.57 |
Fe(0.6)-porousZSM-5 | 0.62 | 0 | 0.69 | 0.69 |
Fe(1)-porousZSM-5 | 0.97 | 0 | 0.75 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Wu, Y.; Zhai, G.; Ge, H. ZSM-5-Confined Fe-O4 Nanozymes Enable the Identification of Intrinsic Active Sites in POD-like Reactions. Nanomaterials 2025, 15, 1090. https://doi.org/10.3390/nano15141090
Xu G, Wu Y, Zhai G, Ge H. ZSM-5-Confined Fe-O4 Nanozymes Enable the Identification of Intrinsic Active Sites in POD-like Reactions. Nanomaterials. 2025; 15(14):1090. https://doi.org/10.3390/nano15141090
Chicago/Turabian StyleXu, Gaolei, Yunfei Wu, Guanming Zhai, and Huibin Ge. 2025. "ZSM-5-Confined Fe-O4 Nanozymes Enable the Identification of Intrinsic Active Sites in POD-like Reactions" Nanomaterials 15, no. 14: 1090. https://doi.org/10.3390/nano15141090
APA StyleXu, G., Wu, Y., Zhai, G., & Ge, H. (2025). ZSM-5-Confined Fe-O4 Nanozymes Enable the Identification of Intrinsic Active Sites in POD-like Reactions. Nanomaterials, 15(14), 1090. https://doi.org/10.3390/nano15141090