Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation
Abstract
1. Introduction
2. Experimental Section
2.1. Device Fabrication
2.2. Raman Spectroscopy and Measurement Setup
3. Physical Mechanisms at Play
4. Results and Discussions
4.1. Current vs. Voltage Characteristics
4.2. Tunable Figures of Merit
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yamazoe, N.; Shimizu, Y. Humidity sensors: Principles and applications. Sens. Actuators 1986, 10, 379–398. [Google Scholar] [CrossRef]
- Iloabuchi Obianyo, J. Humidity Sensors, Major Types and Applications. In Humidity Sensors—Types and Applications; Chani, M.T.S., Asiri, A.M., Khan, S.B., Eds.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Arman Kuzubasoglu, B. Recent Studies on the Humidity Sensor: A Mini Review. ACS Appl. Electron. Mater. 2022, 4, 4797–4807. [Google Scholar] [CrossRef]
- Liu, T.; Rong, Y.; Zhou, G.; Zhang, G.; Su, C.; Li, P.; Yin, X.; Wang, G.; Wu, W.; Zhang, L. Direct-Writing MXene/Polypropylene Composites for Wearable Humidity Sensors with Multiple Applications. IEEE Sens. J. 2024, 24, 15241–15251. [Google Scholar] [CrossRef]
- Anisimov, Y.A.; Evitts, R.W.; Cree, D.E.; Wilson, L.D. Polyaniline/biopolymer composite systems for humidity sensor applications: A review. Polymers 2021, 13, 2722. [Google Scholar] [CrossRef]
- Slinker, K.A.; Kondash, C.; Dickinson, B.T.; Baur, J.W. CNT-Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing. Adv. Mater. Technol. 2016, 1, 11. [Google Scholar] [CrossRef]
- Tung, T.T.; Nine, M.J.; Krebsz, M.; Pasinszki, T.; Coghlan, C.J.; Tran, D.N.H.; Losic, D. Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Adv. Funct. Mater. 2017, 27, 1702891. [Google Scholar] [CrossRef]
- Rezvani, E.; Hatamie, A.; Berahman, M.; Simchi, M.; Angizi, S.; Rahmati, R.; Kennedy, J.; Simchi, A. Synthesis, First-Principle Simulation, and Application of Three-Dimensional Ceria Nanoparticles/Graphene Nanocomposite for Non-Enzymatic Hydrogen Peroxide Detection. J. Electrochem. Soc. 2019, 166, H3167–H3174. [Google Scholar] [CrossRef]
- Chang, H.M.; Fan, K.L.; Charnas, A.; Ye, P.D.; Lin, Y.M.; Wu, C.I.; Wu, C.H. Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors. J. Phys. D. Appl. Phys. 2018, 51, aab063. [Google Scholar] [CrossRef]
- Li, R.; Xu, Z.; Mao, B.; Xie, G.; Wang, Y.; Liu, Z.; Fang, H. Pt/GO/TiO2 room–temperature hydrogen sensing Schottky diode: High resistance to humidity interference endowed by the graphene oxide interlayer. Sens. Actuators B Chem. 2024, 408, 135569. [Google Scholar] [CrossRef]
- Salehi, A.; Nikfarjam, A.; Kalantari, D.J. Pd/Porous GaAs Schottky Contact. Sensors 2006, 6, 1415–1421. [Google Scholar] [CrossRef]
- Jang, S.; Jung, S.; Baik, K.H. Hydrogen sensing performance of ZnO schottky diodes in humid ambient conditions with PMMA membrane layer. Sensors 2020, 20, 835. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.F.A.; Salleh, N.A.; Abidin, M.S.Z.; Nawabjan, A. Humidity effect on electrical properties of graphene oxide back-to-back Schottky diode. Telkomnika Telecommun. Comput. Electron. Control 2019, 17, 2427–2433. [Google Scholar] [CrossRef]
- Belhadj, H.; AlSalka, Y.; Robertson, P.; Bahnemann, D.W. Gate-polarity-dependent doping effects of H2O adsorption on graphene/SiO2 field-effect transistors. ECS Trans. 2017, 75, 101–113. [Google Scholar] [CrossRef]
- Meng, F.L.; Guo, Z.; Huang, X.J. Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal. Chem. 2015, 68, 37–47. [Google Scholar] [CrossRef]
- Zubiarrain-Laserna, A.; Kruse, P. Review—Graphene-Based Water Quality Sensors. J. Electrochem. Soc. 2020, 167, 037539. [Google Scholar] [CrossRef]
- Dalmieda, J.; Zubiarrain-Laserna, A.; Ganepola, D.; Selvaganapathy, P.R.; Kruse, P. Chemiresistive detection of silver ions in aqueous media. Sens. Actuators B Chem. 2021, 328, 129023. [Google Scholar] [CrossRef]
- Mohammed, M.; Li, Z.; Cui, J.; Chen, T. pin Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res. Lett. 2012, 7, 2–7. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D. Graphene-on-silicon schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef]
- Chen, C.C.; Aykol, M.; Chang, C.C.; Levi, A.F.J.; Cronin, S.B. Graphene-silicon Schottky diodes. Nano Lett. 2011, 11, 1863–1867. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, K.; McEvoy, N.; Yim, C.; Duesberg, G.S. Chemically modulated graphene diodes. Nano Lett. 2013, 13, 2182–2188. [Google Scholar] [CrossRef]
- Parui, S.; Ruiter, R.; Zomer, P.J.; Wojtaszek, M.; Van Wees, B.J.; Banerjee, T. Temperature dependent transport characteristics of graphene/n-Si diodes. J. Appl. Phys. 2014, 116, 244505. [Google Scholar] [CrossRef]
- An, X.; Liu, F.; Jung, Y.J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Kar, S. Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions. ACS Nano 2014, 8, 10270–10279. [Google Scholar] [CrossRef]
- An, Y.; Behnam, A.; Pop, E.; Ural, A. Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 2013, 102, 013110. [Google Scholar] [CrossRef]
- Lee, I.; Kim, J.N.; Kang, W.T.; Shin, Y.S.; Lee, B.H.; Yu, W.J. Schottky Barrier Variable Graphene/Multilayer-MoS2 Heterojunction Transistor Used to Overcome Short Channel Effects. ACS Appl. Mater. Interfaces 2020, 12, 2854–2861. [Google Scholar] [CrossRef]
- Ye, Y.; Dai, Y.; Dai, L.; Shi, Z.; Liu, N.; Wang, F.; Fu, L.; Peng, R.; Wen, X.; Chen, Z.; et al. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. ACS Appl. Mater. Interfaces 2010, 2, 3406–3410. [Google Scholar] [CrossRef]
- Tongay, S.; Lemaitre, M.; Miao, X.; Gila, B.; Appleton, B.R.; Hebard, A.F. Rectification at graphene-semiconductor interfaces: Zero-gap semiconductor-based diodes. Phys. Rev. X 2012, 2, 011002. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Luongo, G.; Iemmo, L.; Urban, F.; Giubileo, F. Graphene-Silicon Schottky Diodes for Photodetection. IEEE Trans. Nanotechnol. 2018, 17, 1133–1137. [Google Scholar] [CrossRef]
- Grillo, A.; Di Bartolomeo, A. A Current–Voltage Model for Double Schottky Barrier Devices. Adv. Electron. Mater. 2021, 7, 2000979. [Google Scholar] [CrossRef]
- Luongo, G.; Grillo, A.; Urban, F.; Giubileo, F.; Di Bartolomeo, A. Effect of silicon doping on graphene/silicon Schottky photodiodes. Mater. Today Proc. 2020, 20, 82–86. [Google Scholar] [CrossRef]
- Srisonphan, S. Hybrid Graphene-Si-Based Nanoscale Vacuum Field Effect Phototransistors. ACS Photonics 2016, 3, 1799–1808. [Google Scholar] [CrossRef]
- Srisonphan, S.; Kanokbannakorn, W.; Teerakawanich, N. Field emission graphene-oxide-silicon field effect based photodetector. Phys. Status Solidi Rapid Res. Lett. 2015, 9, 656–662. [Google Scholar] [CrossRef]
- Fattah, A.; Khatami, S. Selective H2S gas sensing with a graphene/n-Si schottky diode. IEEE Sens. J. 2014, 14, 4104–4108. [Google Scholar] [CrossRef]
- Zu, Y.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Electrospun nanofiber-based humidity sensors: Materials, devices, and emerging applications. J. Mater. Chem. A 2024, 12, 27157–27179. [Google Scholar] [CrossRef]
- Ding, S.; Jin, X.; Guo, J.; Kou, B.; Chai, M.; Dou, S.; Jin, G.; Zhang, H.; Zhao, X.; Ma, J.; et al. A Biomimetic Asymmetric Structured Intelligent Wound Dressing with Dual-modality Humidity-pressure Sensing for Non-invasive and Real-time Wound Healing Monitoring. Adv. Fiber Mater. 2024, 7, 156–171. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, Z.; Jauregui, L.A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y.P.; Pei, S.S. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sens. Actuators B Chem. 2010, 150, 296–300. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Colombo, L.; Ruoff, R.S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 3893, 1312–1315. [Google Scholar] [CrossRef]
- Moutinho, M.V.O.; Venezuela, P.; Pimenta, M.A. Raman Spectroscopy of Twisted Bilayer Graphene. J. Carbon Res. 2021, 7, 10. [Google Scholar] [CrossRef]
- García-Ruiz, A.; Thompson, J.J.P.; Mucha-Kruczyński, M.; Fal’ko, V.I. Electronic Raman Scattering in Twistronic Few-Layer Graphene. Phys. Rev. Lett. 2020, 125, 197401. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, P.; Pan, C.; Miao, T.; Wu, Y.; Taniguchi, T.; Watanabe, K.; Lau, C.N.; Bockrath, M. Raman spectroscopy measurement of bilayer graphene’s twist angle to boron nitride. Appl. Phys. Lett. 2015, 107, 33101. [Google Scholar] [CrossRef]
- Yang, Y.; Murali, R. Binding mechanisms of molecular oxygen and moisture to graphene. Appl. Phys. Lett. 2011, 98, 2011–2014. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Zhu, D. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335–3345. [Google Scholar] [CrossRef]
- Al-Taii, H.M.J.; Amin, Y.M.; Periasamy, V. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles. Sci. Rep. 2016, 6, 25519. [Google Scholar] [CrossRef]
- Angizi, S.; Selvaganapathy, P.R.; Kruse, P. Graphene-silicon Schottky devices for operation in aqueous environments: Device performance and sensing application. Carbon 2022, 194, 140–153. [Google Scholar] [CrossRef]
- Late, D.J.; Huang, Y.K.; Liu, B.; Acharya, J.; Shirodkar, S.N.; Luo, J.; Yan, A.; Charles, D.; Waghmare, U.V.; Dravid, V.P.; et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891. [Google Scholar] [CrossRef]
- Khandare, L.; Terdale, S.S.; Late, D.J. Ultra-fast α-MoO3 nanorod-based Humidity sensor. Adv. Device Mater. 2016, 2, 15–22. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 235440. [Google Scholar] [CrossRef]
- Wehling, T.O.; Lichtenstein, A.I.; Katsnelson, M.I. First-principles studies of water adsorption on graphene: The role of the substrate. Appl. Phys. Lett. 2008, 93, 202110. [Google Scholar] [CrossRef]
- Wehling, T.O.; Katsnelson, M.I.; Lichtenstein, A.I. Adsorbates on graphene: Impurity states and electron scattering. Chem. Phys. Lett. 2009, 476, 125–134. [Google Scholar] [CrossRef]
- Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 85–87. [Google Scholar] [CrossRef]
- Shehzad, K.; Shi, T.; Qadir, A.; Wan, X.; Guo, H.; Ali, A.; Xuan, W.; Xu, H.; Gu, Z.; Peng, X.; et al. Designing an Efficient Multimode Environmental Sensor Based on Graphene–Silicon Heterojunction. Adv. Mater. Technol. 2017, 2, 11600262. [Google Scholar] [CrossRef]
Devices | |||||
---|---|---|---|---|---|
Graphene-Trenched Silicon Junctions | 3 | 0.895 @ RH10 0.94 @ RH90 | 2.15 @ RH10 1.68 @ RH90 | 17 @ RH10 5 @ RH90 | 0.48 @ RH10 0.98 @ RH80 |
5 | 0.805 @ RH10 0.92 @ RH90 | 4.9 @ RH10 2.9 @ RH90 | 24 @ RH10 13 @ RH90 | 0.31 @ RH10 0.88 @ RH80 | |
7 | 0.877 @ RH10 0.916 @ RH90 | 3 @ RH10 2.62 @ RH90 | 47 @ RH10 18.5 @ RH90 | 0.15 @ RH10 0.84 @ RH80 | |
9 | 0.742 @ RH10 0.775 @ RH90 | 5.4 @ RH10 4 @ RH90 | 102 @ RH10 66 @ RH90 | 0.001 @ RH10 0.75 @ RH80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadir, A.; Ali, M.; Khaliq, A.; Karim, S.; Farooq, U.; Xu, H.; Yu, Y. Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation. Nanomaterials 2025, 15, 985. https://doi.org/10.3390/nano15130985
Qadir A, Ali M, Khaliq A, Karim S, Farooq U, Xu H, Yu Y. Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation. Nanomaterials. 2025; 15(13):985. https://doi.org/10.3390/nano15130985
Chicago/Turabian StyleQadir, Akeel, Munir Ali, Afshan Khaliq, Shahid Karim, Umar Farooq, Hongsheng Xu, and Yiting Yu. 2025. "Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation" Nanomaterials 15, no. 13: 985. https://doi.org/10.3390/nano15130985
APA StyleQadir, A., Ali, M., Khaliq, A., Karim, S., Farooq, U., Xu, H., & Yu, Y. (2025). Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation. Nanomaterials, 15(13), 985. https://doi.org/10.3390/nano15130985