Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals
Abstract
1. Introduction
2. Evolution of Surface Modification on Biomaterials
3. Coatings as Surface Modification
4. Antibiotics as Antimicrobial Agents for Coating
5. Metal/Metaloxide Nanoparticles and Ions as Antibacterial Agents for Coating
6. Phytochemical Compounds as Antibacterial Agents for Coating
7. Application of Plant-Based Compounds as Antibacterial Coatings
8. Comparative Resistance Mechanisms of Bacteria to Antibiotic, Metal/Metaloxide Nanoparticle, and Phytochemical-Based Coatings
9. Strategic Selection of Antibacterial Agents for Implant Surface Modification
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, J.B.; Izano, E.A.; Gopal, P.; Karwacki, M.T.; Kim, S.; Bose, J.L.; Bayles, K.W.; Horswill, A.R. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. Mol. Biol. 2012, 3, e00198-12. [Google Scholar] [CrossRef] [PubMed]
- Kumara, S.B.S.; Senevirathne, S.A.I.; Mathew, A.; Bray, L.; Mirkhalaf, M.; Yarlagadda, P.K. Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications. Nanomaterials 2023, 13, 2799. [Google Scholar] [CrossRef]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef]
- Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J.W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012, 33, 5967–5982. [Google Scholar] [CrossRef] [PubMed]
- Barberi, J.; Spriano, S. Titanium and protein adsorption: An overview of mechanisms and effects of surface features. Materials 2021, 14, 1590. [Google Scholar] [CrossRef]
- Dodo, C.G.; Senna, P.M.; Custodio, W.; Paes Leme, A.F.; Del Bel Cury, A.A. Proteome analysis of the plasma protein layer adsorbed to a rough titanium surface. Biofouling 2013, 29, 549–557. [Google Scholar] [CrossRef]
- Costa, B.; Mota, R.; Tamagnini, P.; LMartins, M.C.; Costa, F. Natural cyanobacterial polymer-based coating as a preventive strategy to avoid catheter-associated urinary tract infections. Mar. Drugs 2020, 18, 279. [Google Scholar] [CrossRef]
- Costa, C.L.; Azevedo, C.P.; Quesada-Gómez, C.; Brito, G.A.C.; Regueira-Neto, M.D.S.; Guedes, G.M.M.; Rocha, M.F.G.; Sidrim, J.J.C.; Cordeiro, R.A.; Carvalho, C.B.M.; et al. Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Anaerobe 2021, 69, 102322. [Google Scholar] [CrossRef]
- Costa, R.C.; Souza, J.G.S.; Bertolini, M.; Retamal-Valdes, B.; Feres, M.; Barão, V.A. Extracellular biofilm matrix leads to microbial dysbiosis and reduces biofilm susceptibility to antimicrobials on titanium biomaterial: An in vitro and in situ study. Clin. Oral Implant. Res. 2020, 31, 1173–1186. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Cheng, F.; Jiang, H. Smart coatings for implants: A review. Front. Bioeng. Biotechnol. 2021, 9, 733935. [Google Scholar]
- Ivanova, E.P.; Truong, V.K.; Webb, H.K.; Baulin, V.A.; Wang, J.Y.; Mohammodi, N.; Wang, F.; Fluke, C.; Crawford, R.J. Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Sci. Rep. 2011, 1, 165. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Falkai, P.; Wobrock, T.; Lieberman, J.; Glenthøj, B.; Gattaz, W.F.; Thibaut, F.; Möller, H.-J.; WFSBP Task Force on Treatment Guidelines for Schizophrenia. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia–a short version for primary care. Int. J. Psychiatry Clin. Pract. 2017, 21, 82–90. [Google Scholar] [CrossRef]
- Veerachamy, S.; Yarlagadda, T.; Manivasagam, G.; Yarlagadda, P.K. Bacterial adherence and biofilm formation on medical implants: A review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 1083–1099. [Google Scholar] [CrossRef]
- Truong, V.K.; Webb, H.K.; Fadeeva, E.; Chichkov, B.N.; Wang, J.Y.; Crawford, R.J.; Ivanova, E.P. Micro- and nano-structured surfaces for bacterial control. Adv. Healthc. Mater. 2017, 6, 1700552. [Google Scholar]
- Watson, G.S.; Green, D.W.; Schwarzkopf, L.; Li, X.; Cribb, B.W.; Myhra, S.; Watson, J.A. A simple model for the attachment of bacteria to nanostructured surfaces. Adv. Colloid Interface Sci. 2019, 272, 102021. [Google Scholar]
- Bhadra, C.M.; Khanh Truong, V.; Pham, V.T.; Al Kobaisi, M.; Seniutinas, G.; Wang, J.Y.; Juodkazis, S.; Crawford, R.J.; Ivanova, E.P. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci. Rep. 2015, 5, 16817. [Google Scholar] [CrossRef]
- Tripathy, A.; Sen, P.; Su, B.; Briscoe, W.H. Natural and bioinspired nanostructured bactericidal surfaces. Adv. Colloid Interface Sci. 2017, 248, 85–104. [Google Scholar] [CrossRef]
- Modaresifar, K.; Azizian, S.; Ganjian, M.; Fratila-Apachitei, L.E.; Zadpoor, A.A. Bactericidal effects of nanopatterns: A systematic review. Acta Biomater. 2019, 83, 29–36. [Google Scholar] [CrossRef]
- Linklater, D.P.; Baulin, V.A.; Juodkazis, S.; Crawford, R.J.; Stoodley, P.; Ivanova, E.P. Mechano-bactericidal actions of nanostructured surfaces. Nat. Rev. Microbiol. 2021, 19, 8–22. [Google Scholar] [CrossRef]
- Hasan, J.; Crawford, R.J.; Ivanova, E.P. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef]
- Nowruzi, F.; Imani, R.; Faghihi, S. Effect of electrochemical oxidation and drug loading on the antibacterial properties and cell biocompatibility of titanium substrates. Sci. Rep. 2022, 12, 8595. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, F. Strategies for surface modification to develop antibacterial coatings: A review. Mater. Sci. Eng. C 2019, 98, 1095–1111. [Google Scholar]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Shukla, M.K.; Singh, R.P.; Reddy, C.R.K.; Jha, B. Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour. Technol. 2012, 107, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Saad, K.S.K.; Saba, T.; Rashid, A.B. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life. Heliyon 2024, 10, e35541. [Google Scholar] [CrossRef]
- Geyao, L.; Yang, D.; Wanglin, C.; Chengyong, W. Development and application of physical vapor deposited coatings for medical devices: A review. Procedia CIRP 2020, 89, 250–262. [Google Scholar] [CrossRef]
- Islam, S.U.; Shukla, S.K.; Hussain, C.M. Antiviral and Antimicrobial Coatings Based on Functionalized Nanomaterials: Design, Applications, and Devices; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Sathishkumar, S.; Jawahar, P.; Chakraborti, P.; Muthusivaramapandian, M.; Indiran, S.; Sathishkumar, P.; Siengchin, S. 12 Surface Coating. In Tribo-Behaviors of Biomaterials and their Applications: Fundamentals, Recent Advancements, and Future Trends; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Mehta, A.; Singh, G. Consequences of hydroxyapatite doping using plasma spray to implant biomaterials. J. Electrochem. Sci. Eng. 2023, 13, 5–23. [Google Scholar] [CrossRef]
- Deng, T.T.; Ding, W.Y.; Lu, X.X.; Zhang, Q.H.; Du, J.X.; Wang, L.J.; Yang, M.N.; Yin, Y.; Liu, F.J. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front. Pharmacol. 2024, 15, 1338951. [Google Scholar] [CrossRef]
- Hadzhieva, Z.; Boccaccini, A.R. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications-A review. Curr. Opin. Biomed. Eng. 2022, 21, 100367. [Google Scholar] [CrossRef]
- Chen, S.; Liang, H.; Ji, Y.; Kou, H.; Zhang, C.; Shang, G.; Shang, C.; Song, Z.; Yang, L.; Liu, L.; et al. Curcumin modulates the crosstalk between macrophages and bone mesenchymal stem cells to ameliorate osteogenesis. Front. Cell Dev. Biol. 2021, 9, 634650. [Google Scholar] [CrossRef]
- Ilka, S.; Heshmati, A.; Mirabdollahi, S.A.; Jafarzadeh, A.; Sedghy, F.; Bagheri, F.; Azari, O.; Mohammadi, M.A.; Jafari Dareh Dar, F.; Arabnadvi, M. Effect of turmeric extract on bone healing in an experimental model of femoral bone fracture. Avicenna J. Phytomed. 2022, 12, 197. [Google Scholar] [PubMed]
- Shanbhag, P.P.; Patil, N.S. BioMicroelectromechanical systems: A novel approach for drug targeting in chronic diseases. New Horiz. Transl. Med. 2017, 3, 265–271. [Google Scholar]
- Zhang, L.N.; Wang, X.X.; Wang, Z.; Li, K.Y.; Xu, B.H.; Zhang, J. Berberine improves advanced glycation end products-induced osteogenic differentiation responses in human periodontal ligament stem cells through the canonical Wnt/β-catenin pathway. Mol. Med. Rep. 2019, 19, 5440–5452. [Google Scholar] [CrossRef] [PubMed]
- NNichol, T.; Callaghan, J.; Townsend, R.; Stockley, I.; Hatton, P.V.; Le Maitre, C.; Smith, T.J.; Akid, R. The antimicrobial activity and biocompatibility of a controlled gentamicin-releasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Bone Jt. J. 2021, 103, 522–529. [Google Scholar] [CrossRef]
- Simila, H.O.; Boccaccini, A.R. Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dent. Mater. 2022, 38, 725–747. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings 2022, 12, 1380. [Google Scholar] [CrossRef]
- Wadhwa, K.; Kadian, V.; Puri, V.; Bhardwaj, B.Y.; Sharma, A.; Pahwa, R.; Rao, R.; Gupta, M.; Singh, I. New insights into quercetin nanoformulations for topical delivery. Phytomed. Plus 2022, 2, 100257. [Google Scholar] [CrossRef]
- Li, P.; Yin, R.; Cheng, J.; Lin, J. Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention. Int. J. Mol. Sci. 2023, 24, 11680. [Google Scholar] [CrossRef]
- Narayana, P.S.V.V.S.; Srihari, P.S.V.V. Biofilm resistant surfaces and coatings on implants: A review. Mater. Today Proc. 2019, 18, 4847–4853. [Google Scholar] [CrossRef]
- Kligman, S.; Ren, Z.; Chung, C.H.; Perillo, M.A.; Chang, Y.C.; Koo, H.; Zheng, Z.; Li, C. The impact of dental implant surface modifications on osseointegration and biofilm formation. J. Clin. Med. 2021, 10, 1641. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.; McFadden, R.; Chan, C.W.; Carson, L. Titanium for orthopedic applications: An overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. IScience 2020, 23, 101745. [Google Scholar] [CrossRef] [PubMed]
- Ahmadabadi, H.Y.; Yu, K.; Kizhakkedathu, J.N. Surface modification approaches for prevention of implant associated infections. Colloids Surf. B Biointerfaces 2020, 193, 111116. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef]
- Costa, B.; Martínez-de-Tejada, G.; Gomes, P.A.C.; Martins, M.C.L.; Costa, F. Antimicrobial Pep-tides in the Battle against Orthopedic Implant-Related Infections: A Review. Pharmaceutics 2021, 13, 1918. [Google Scholar] [CrossRef]
- Zalewska, J.; Vivcharenko, V.; Belcarz, A. Gypsum-Related Impact on Antibiotic-Loaded Composite Based on Highly Porous Hydroxyapatite—Advantages and Disadvantages. Int. J. Mol. Sci. 2023, 24, 17178. [Google Scholar] [CrossRef] [PubMed]
- Dorati, R.; DeTrizio, A.; Modena, T.; Conti, B.; Benazzo, F.; Gastaldi, G.; Genta, I. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals 2017, 10, 96. [Google Scholar] [CrossRef]
- Swartjes, J.J.; Sharma, P.K.; Kooten, T.V.; van der Mei, H.C.; Mahmoudi, M.; Busscher, H.J.; Rochford, E.T. Current developments in antimicrobial surface coatings for biomedical applications. Curr. Med. Chem. 2015, 22, 2116–2129. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.U.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wang, Y.; Tong, H.; Feng, Y.; Li, M.; Jia, L.; Yu, K. Sedative drugs used for mechanically ventilated patients in intensive care units: A systematic review and network meta-analysis. Curr. Med. Res. Opin. 2019, 35, 435–446. [Google Scholar] [CrossRef]
- Akay, S.; Yaghmur, A. Recent advances in antibacterial coatings to combat orthopedic implant-associated infections. Molecules 2024, 29, 1172. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Askari Rizvi, S.H.; Abbas, N.; Sajjad, U.; Shad, M.R.; Badshah, M.A.; Malik, A.I. Recent developments in coatings for orthopedic metallic implants. Coatings 2021, 11, 791. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, F.; Yang, X.; Zhang, S.; Jia, C.; Liu, X.; Zhang, X. Titanium surface polyethylene glycol hydrogel and gentamicin-loaded cross-linked starch microspheres release system for anti-infective drugs. J. Drug Target. 2023, 31, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Li, X.; Yin, H.; Wang, L.; Pei, Y.; Lv, X. Controlled release of vancomycin hydrochloride from a composite structure of polymeric films and porous fibers on implants. Chem. Eng. J. 2017, 325, 601–610. [Google Scholar] [CrossRef]
- Akshaya, S.; Rowlo, P.K.; Dukle, A.; Nathanael, A.J. Antibacterial coatings for titanium implants: Recent trends and future perspectives. Antibiotics 2022, 11, 1719. [Google Scholar] [CrossRef]
- Sahoo, J.; Sarkhel, S.; Mukherjee, N.; Jaiswal, A. Nanomaterial-based antimicrobial coating for biomedical implants: New age solution for biofilm-associated infections. ACS Omega 2022, 7, 45962–45980. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhou, Z.; Yu, X. Coatings as the useful drug delivery system for the prevention of implant-related infections. J. Orthop. Surg. Res. 2018, 13, 220. [Google Scholar] [CrossRef]
- de Breij, A.; Riool, M.; Kwakman, P.; de Boer, L.; Cordfunke, R.; Drijfhout, J.; Cohen, O.; Emanuel, N.; Zaat, S.; Nibbering, P.; et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J. Control. Release 2016, 222, 1–8. [Google Scholar] [CrossRef]
- Jennings, J.A.; Carpenter, D.P.; Troxel, K.S.; Beenken, K.E.; Smeltzer, M.S.; Courtney, H.S.; Haggard, W.O. Novel antibiotic-loaded point-of-care implant coating inhibits biofilm. Clin. Orthop. Relat. Res. 2015, 473, 2270–2282. [Google Scholar] [CrossRef]
- Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and antimicrobial biomaterials: An overview. Apmis 2017, 125, 392–417. [Google Scholar] [CrossRef]
- Bassegoda, A.; Ivanova, K.; Ramon, E.; Tzanov, T. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl. Microbiol. Biotechnol. 2018, 102, 2075–2089. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tang, T. Surface treatment strategies to combat implant-related infection from the beginning. J. Orthop. Transl. 2019, 17, 42–54. [Google Scholar] [CrossRef]
- Ballarre, J.; Aydemir, T.; Liverani, L.; Roether, J.A.; Goldmann, W.H.; Boccaccini, A.R. Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surf. Coat. Technol. 2020, 381, 125138. [Google Scholar] [CrossRef]
- Alves Pereira, M.M.; Piazza, R.; Santana, A.P.; Ricardo Barão, V.A.; Malheiros, S.S.; van den Beucken, J.J.J.P.; de Molon, R.S.; de Avila, E.D. Unraveling the Applicability of LbL Coatings for Drug Delivery in Dental Implant-Related Infection Treatment. ACS Biomater. Sci. Eng. 2024, 11, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, L.; Li, J.; Luo, J.; Liang, K.; Yin, D.; Tao, S.; Yang, J.; Li, J. Mussel-inspired organic–inorganic implant coating based on a layer-by-layer method for anti-infection and osteogenesis. Ind. Eng. Chem. Res. 2022, 61, 13040–13051. [Google Scholar] [CrossRef]
- Escobar, A.; Muzzio, N.; Moya, S.E. Antibacterial layer-by-layer coatings for medical implants. Pharmaceutics 2021, 13, 16. [Google Scholar] [CrossRef]
- AlMatar, M.; Albarri, O.; Makky, E.A.; Köksal, F. Efflux pump inhibitors: New updates. Pharmacol. Rep. 2021, 73, 1–16. [Google Scholar] [CrossRef]
- Farhat, N.; Ali, A.; Bonomo, R.A.; Khan, A.U. Efflux pumps as interventions to control infection caused by drug-resistance bacteria. Drug Discov. Today 2020, 25, 2307–2316. [Google Scholar] [CrossRef]
- Mitra, A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf. 2024, 12, 100133. [Google Scholar] [CrossRef]
- Haque, M.; Islam, S.; Sheikh, A.; Dhingra, S.; Uwambaye, P.; Labricciosa, F.M.; Iskandar, K.; Charan, J.; Abukabda, A.B.; Jahan, D. Quorum sensing: A new prospect for the management of antimicrobial-resistant infectious diseases. Expert Rev. Anti-Infect. Ther. 2021, 19, 571–586. [Google Scholar] [CrossRef]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef] [PubMed]
- Osungunna, M.O. Biofilm: Formation and natural products’ approach to control—A review. Afr. J. Infect. Dis. 2022, 16, 59–71. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Z.; Ding, T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 2020, 17, 425. [Google Scholar] [CrossRef] [PubMed]
- Naga, N.G.; Shaaban, M.I. Quorum Sensing and Quorum sensing inhibitors of natural origin. In Drug Discovery and Design Using Natural Products; Springer Nature: Cham, Switzerland, 2023; pp. 395–416. [Google Scholar]
- Long, L.; Wang, R.; Chiang, H.Y.; Li, Y.X.; Chen, F.; Qian, P.Y. A potent antibiofilm agent inhibits and eradicates mono-and multi-species biofilms. BioRxiv 2020. [Google Scholar] [CrossRef]
- Srivastava, A.; Verma, N.; Kumar, V.; Apoorva, P.; Agarwal, V. Biofilm inhibition/eradication: Exploring strategies and confronting challenges in combatting biofilm. Arch. Microbiol. 2024, 206, 212. [Google Scholar] [CrossRef]
- Tan, H.L.; Goh, T.W.; Ong, Y.T. Recent progress in metal-based antimicrobial coatings for biomedical implants: A review. Materials 2021, 14, 6112. [Google Scholar] [CrossRef]
- Kang, S.; Park, T.E.; Lee, D. Synergistic antibacterial effect of silver nanoparticles combined with antibiotics. J. Nanosci. Nanotechnol. 2019, 19, 4796–4801. [Google Scholar] [CrossRef]
- Gul, H.; Kausar, A.; Iqbal, M.; Rehman, M.A. Recent advancements in nanomaterials for biomedical applications: Challenges and perspectives. J. Biomed. Mater. Res. Part A 2021, 109, 2442–2458. [Google Scholar] [CrossRef]
- Yadav, A.; Pandey, A.; Yadav, A. Recent advances in antimicrobial coatings for orthopedic implants. J. Orthop. Res. 2020, 38, 2000–2011. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Chen, X. Drug-loaded bioactive coatings on metallic implants for prevention of implant-associated infections. Front. Bioeng. Biotechnol. 2017, 5, 24. [Google Scholar]
- Antoci, V.; Adams, C.S.; Hickok, N.J.; Shapiro, I.M.; Parvizi, J. Vancomycin-modified implants protect against Staphylococcus aureus infection in vivo. Acta Biomater. 2007, 3, 955–960. [Google Scholar]
- Xie, Z.; Paras, C.B.; Weng, H.; Punnakitikashem, P.; Su, L.C.; Vu, K.; Tang, L.; Yang, J.; Nguyen, K.T. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2010, 9, 9351–9359. [Google Scholar] [CrossRef]
- Patel, R.B.; Patel, M.R.; Bhatt, K.K.; Patel, B.G. Supercritical fluid technology: A promising approach in pharmaceutical research. Pharm. Dev. Technol. 2010, 14, 135–150. [Google Scholar]
- Yang, J.; Fang, K.; Xu, K.; Shen, X.; Xu, X. Effect of zinc or copper doping on corrosion resistance and anti-oxidative stress of strontium-based micro-arc oxidation coatings on titanium. Appl. Surf. Sci. 2023, 626, 157229. [Google Scholar] [CrossRef]
- Gonçalves, R.A.; Ku, J.W.K.; Zhang, H.; Salim, T.; Oo, G.; Zinn, A.A.; Boothroyd, C.; Tang, R.M.Y.; Gan, C.L.; Gan, Y.-H.; et al. Copper-nanoparticle-coated fabrics for rapid and sustained antibacterial activity applications. ACS Appl. Nano Mater. 2022, 5, 12876–12886. [Google Scholar] [CrossRef]
- Fan, X.; Yahia, L.H.; Sacher, E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 2021, 10, 137. [Google Scholar] [CrossRef]
- Kravanja, K.A.; Finšgar, M. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients. Mater. Des. 2022, 217, 110653. [Google Scholar] [CrossRef]
- Bapat, R.A.; Joshi, C.P.; Bapat, P.; Chaubal, T.V.; Pandurangappa, R.; Jnanendrappa, N.; Gorain, B.; Khurana, S.; Kesharwani, P. The use of nanoparticles as biomaterials in dentistry. Drug Discov. Today 2019, 24, 85–98. [Google Scholar] [CrossRef]
- Makvandi, P.; Wang, C.Y.; Zare, E.N.; Borzacchiello, A.; Niu, L.N.; Tay, F.R. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.C.; He, F.; Peng, S.; Li, Y.; Shao, L.; Darling, S.B. Mussel-inspired surface engineering for water-remediation materials. Matter 2019, 1, 115–155. [Google Scholar] [CrossRef]
- Puspasari, V.; Ridhova, A.; Hermawan, A.; Amal, M.I.; Khan, M.M. ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst. Eng. 2022, 45, 1421–1445. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.B.; Haddad, Y.; Kosaristanova, L.; Smerkova, K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1860. [Google Scholar] [CrossRef]
- Kumaravel, V.; Nair, K.M.; Mathew, S.; Bartlett, J.; Kennedy, J.E.; Manning, H.G.; Whelan, B.J.; Leyland, N.S.; Pillai, S.C. Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants. Chem. Eng. J. 2021, 416, 129071. [Google Scholar] [CrossRef] [PubMed]
- D’aLmeida, M.; Attik, N.; Amalric, J.; Brunon, C.; Renaud, F.; Abouelleil, H.; Toury, B.; Grosgogeat, B.; Egles, C. Chitosan coating as an antibacterial surface for biomedical applications. PLoS ONE 2017, 12, e0189537. [Google Scholar] [CrossRef]
- Shekhawat, D.; Singh, A.; Bhardwaj, A.; Patnaik, A. A short review on polymer, metal and ceramic based implant materials. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1017, p. 012038. [Google Scholar]
- Albayrak, S.; Gul, C. Ceramic coatings for biomedical applications. In Fiber and Ceramic Filler-Based Polymer Composites for Biomedical Engineering; Springer Nature: Singapore, 2024; pp. 233–256. [Google Scholar]
- Nilawar, S.; Uddin, M.; Chatterjee, K. Surface engineering of biodegradable implants: Emerging trends in bioactive ceramic coatings and mechanical treatments. Mater. Adv. 2021, 2, 7820–7841. [Google Scholar] [CrossRef]
- Das, M.; Ray, L.; Tripathy, J. Ceramic coatings for wound healing applications. In Advanced Ceramic Coatings for Emerging Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 311–331. [Google Scholar]
- Topuz, M.; Yigit, O.; Kaseem, M.; Dikici, B. Synthesis of implantable ceramic coatings and their properties. In Advanced Ceramic Coatings for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 53–86. [Google Scholar]
- Amini, S.M. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater. Sci. Eng. C 2019, 103, 109809. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Puertas, R.; Álvarez-Martínez, F.J.; Falco, A.; Barrajón-Catalán, E.; Mallavia, R. Phytochemical-based nanomaterials against antibiotic-resistant bacteria: An updated review. Polymers 2023, 15, 1392. [Google Scholar] [CrossRef]
- Shukla, V.; Bhathena, Z. Sustained release of a purified tannin component of Terminalia chebula from a titanium implant surface prevents biofilm formation by Staphylococcus aureus. Appl. Biochem. Biotechnol. 2015, 175, 3542–3556. [Google Scholar] [CrossRef]
- Wang, T.; Cui, X.; Cai, S.; Zou, X.; Zheng, S.; Li, Y.; Zhang, Z. Multifunctional phytochemical nanoplatform for comprehensive treatment of all-stage MRSA biofilm associated infection and its accompanying inflammation. Chem. Eng. J. 2024, 480, 147951. [Google Scholar] [CrossRef]
- AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-Sheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics 2020, 9, 480. [Google Scholar] [CrossRef]
- Upadhyay, A.; Karumathil, D.P.; Upadhyaya, I.; Bhattaram, V.; Venkitanarayanan, K. Controlling bacterial antibiotic resistance using plant-derived antimicrobials. In Antibiotic Resistance; Elsevier: Amsterdam, The Netherlands, 2016; pp. 205–226. [Google Scholar] [CrossRef]
- Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 2017, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Marquez, L.; Crandall, W.J.; Risener, C.J.; Quave, C.L. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: Insights from 2018–2022. Nat. Prod. Rep. 2023, 40, 1271–1290. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, S. Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. Indian J. Med. Res. 2022, 156, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, S.; Mishra, M.; Naik, P.K. Alternative strategies for combating antibiotic resistance in microorganisms. In Antimicrobial Photodynamic Therapy; CRC Press: Boca Raton, FL, USA, 2023; pp. 65–109. [Google Scholar]
- Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evid.-Based Complement. Altern. Med. 2021, 2021, 3663315. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017, 8, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Wangchuk, P.; Keller, P.A.; Pyne, S.G.; Willis, A.C. Ethnopharmacological documentation and antibacterial screening of medicinal plants used in Bhutan. J. Ethnopharmacol. 2013, 145, 246–252. [Google Scholar]
- Joshi, R.K.; Badakar, V.; Khatib, N.A. Phytochemicals as antibacterial agents: Mechanism of action and their potential applications. Pharmacogn. Rev. 2017, 11, 50–59. [Google Scholar]
- Kim, J.G.; Sharma, A.R.; Lee, Y.-H.; Chatterjee, S.; Choi, Y.J.; Rajvansh, R.; Chakraborty, C.; Lee, S.-S. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024, 16, 1414–1437. [Google Scholar] [CrossRef]
- Cepeda, S.B.; Sandoval, M.J.; Crescitelli, M.C.; Rauschemberger, M.B.; Massheimer, V.L. The isoflavone genistein enhances osteoblastogenesis: Signaling pathways involved. J. Physiol. Biochem. 2020, 76, 99–110. [Google Scholar] [CrossRef]
- An, J.; Hao, D.; Zhang, Q.; Chen, B.; Zhang, R.; Wang, Y.; Yang, H. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption. Int. Immunopharmacol. 2016, 36, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Z.; Luo, Y.; Li, X.; Huang, G.; Chen, H.; Li, A.; Qin, S. The role of flavonoids in the osteogenic differentiation of mesenchymal stem cells. Front. Pharmacol. 2022, 13, 849513. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Avantario, P.; Azzollini, D.; Buongiorno, S.; Viapiano, F.; Campanelli, M.; Ciocia, A.M.; De Leonardis, N. Effects of resveratrol, curcumin and quercetin supplementation on bone metabolism—A systematic review. Nutrients 2022, 14, 3519. [Google Scholar] [CrossRef]
- Giordani, C.; Matacchione, G.; Giuliani, A.; Valli, D.; Scarpa, E.S.; Antonelli, A.; Sabbatinelli, J.; Giacchetti, G.; Sabatelli, S.; Olivieri, F.; et al. Pro-osteogenic and anti-inflammatory synergistic effect of orthosilicic acid, vitamin K2, curcumin, polydatin and quercetin combination in young and senescent bone marrow-derived mesenchymal stromal cells. Int. J. Mol. Sci. 2023, 24, 8820. [Google Scholar] [CrossRef]
- Xin, B.C.; Wu, Q.S.; Jin, S.; Luo, A.H.; Sun, D.G.; Wang, F. Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathol. Oncol. Res. 2020, 26, 1677–1685. [Google Scholar] [CrossRef]
- Hanga-Farcaș, A.; Miere, F.; Filip, G.A.; Clichici, S.; Fritea, L.; Vicaș, L.G.; Marian, E.; Pallag, A.; Jurca, T.; Filip, S.M.; et al. Phytochemical compounds involved in the bone regeneration process and their innovative administration: A systematic review. Plants 2023, 12, 2055. [Google Scholar] [CrossRef] [PubMed]
- de Morais Pinheiro, C.S.; de Carvalho Neta, A.V.; Neto, V.F.P.; da Rocha Oliveira, C.Q.; Ribeiro, R.M.; Borges, A.C.R. Review Plant-Based Bone Grafting: The Future of Bone Hea-ling. Preprint 2023. [Google Scholar] [CrossRef]
- Swain, C.; Wallentin, J. Green chemistry and sustainability in pharmaceuticals: Recent advances. Chem. Rev. 2020, 120, 5861–5915. [Google Scholar]
- Wang, X.; Tang, P.; Yang, K.; Guo, S.; Tang, Y.; Zhang, H.; Wang, Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. J. Ethnopharmacol. 2024, 329, 118141. [Google Scholar] [CrossRef]
- Suganya, T.; Packiavathy, I.A.S.V.; Aseervatham, G.S.B.; Carmona, A.; Rashmi, V.; Mariappan, S.; Devi, N.R.; Ananth, D.A. Tackling multiple-drug-resistant bacteria with conventional and complex phytochemicals. Front. Cell. Infect. Microbiol. 2022, 12, 883839. [Google Scholar] [CrossRef]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem.-Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Eskin, N.M.; Iranshahy, M.; Fazly Bazzaz, B.S. Phytochemicals: A promising weapon in the arsenal against antibiotic-resistant bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef]
- Khare, T.; Anand, U.; Dey, A.; Assaraf, Y.G.; Chen, Z.S.; Liu, Z.; Kumar, V. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front. Pharmacol. 2021, 12, 720726. [Google Scholar] [CrossRef] [PubMed]
- Kirmani, F.; Saddiqe, Z.; Saleem, S.; Ali, F.; Haq, F.U. Phytochemical investigation and antibacterial activity of Curcuma longa against multi-drug resistant bacteria. S. Afr. J. Bot. 2024, 164, 137–145. [Google Scholar] [CrossRef]
- Roaa, M.H. A review article: The importance of the major groups of plants secondary metabolism phenols, alkaloids, and terpenes. Int. J. Res. Appl. Sci. Biotechnol. 2020, 7, 354–358. [Google Scholar]
- Dubale, S.; Kebebe, D.; Zeynudin, A.; Abdissa, N.; Suleman, S. Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. J. Exp. Pharmacol. 2023, 15, 51–62. [Google Scholar] [CrossRef]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef]
- Zanettin, F.; Rundle, C. The Routledge Handbook of Translation and Methodology; Routledge, Taylor & Francis Group: London, UK, 2022. [Google Scholar]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Bi, Y.L.; Tan, H.; Zhang, S.S.; Kang, J.P. Response mechanism of extracellular polymeric substances synthesized by alternaria sp. on drought stress in alfalfa (Medicago sativa L.). J. Agric. Food Chem. 2024, 72, 16812–16824. [Google Scholar] [CrossRef]
- Das, S.; Roy, R.; Paul, P.; Chakraborty, P.; Chatterjee, S.; Malik, M.; Sarkar, S.; Das Gupta, A.; Maiti, D.; Tribedi, P. Piperine, a plant alkaloid, exhibits efficient disintegration of the pre-existing biofilm of Staphylococcus aureus: A step towards effective management of biofilm threats. Appl. Biochem. Biotechnol. 2024, 196, 1272–1291. [Google Scholar] [CrossRef]
- Grover, P.; Thakur, K.; Bhardwaj, M.; Mehta, L.; Raina, S.N.; Rajpal, V.R. Phytotherapeutics in cancer: From potential drug candidates to clinical translation. Curr. Top. Med. Chem. 2024, 24, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, M.; Nissapatorn, V.; Rahmatullah, M.; Paul, A.K.; Rajagopal, M.; Rusdi, N.A.; Seelan, J.S.S.; Suleiman, M.; Zakaria, Z.A.; Wiart, C. Antimicrobial secondary metabolites from the mangrove plants of Asia and the Pacific. Mar. Drugs 2022, 20, 643. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhen, X.; Zhang, Y.; Li, Y.; Koo, S.; Saiding, Q.; Kong, N.; Liu, G.; Chen, W.; Tao, W. Chemically modified platforms for better RNA therapeutics. Chem. Rev. 2024, 124, 929–1033. [Google Scholar] [CrossRef]
- Xedzro, C.; Tano-Debrah, K.; Nakano, H. Antibacterial efficacies and time-kill kinetics of indigenous Ghanaian spice extracts against Listeria monocytogenes and some other food-borne pathogenic bacteria. Microbiol. Res. 2022, 258, 126980. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Netzel, G.; Chhim, P.; Netzel, M.E.; Sultanbawa, Y. Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium sativum L.) cultivars. Foods 2019, 8, 358. [Google Scholar] [CrossRef]
- Pakka, S.; Magar, A.B.; Shrestha, D.; Sharma, T.; Sharma, K.R. Phytochemical analysis and biological activities of solvent extracts of two traditionally used medicinal plants. Bibechana 2024, 21, 113–123. [Google Scholar] [CrossRef]
- Mulat, M.; Khan, F.; Muluneh, G.; Pandita, A. Phytochemical profile and antimicrobial effects of different medicinal plant: Current knowledge and future perspectives. Curr. Tradit. Med. 2020, 6, 24–42. [Google Scholar] [CrossRef]
- ADar, P.; RSingh, L.; AKamal, M.; ADar, T. Unique medicinal properties of Withania somnifera: Phytochemical constituents and protein component. Curr. Pharm. Des. 2016, 22, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Reena, K.M.; Singh, L.; Sharma, S. Curcumin: A Review of its’ Efficacy in the Management of Psoriasis. Drug Deliv. Lett. 2022, 12, 163–183. [Google Scholar] [CrossRef]
- Miranda, L.L.; Guimaraes-Lopes, V.D.P.; Altoé, L.S.; Sarandy, M.M.; Melo, F.C.S.A.; Novaes, R.D.; Gonçalves, R.V. Plant extracts in the bone repair process: A systematic review. Mediat. Inflamm. 2019, 2019, 1296153. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Oliveira, C.; Reis, R.L.; Martins, A.; Silva, T.H. Marine-Inspired Drugs and Biomaterials in the Perspective of Bone Regenerative Medicine. Mar. Drugs 2023, 21, 45. [Google Scholar]
- Zheng, Y.; Wang, J.; Xu, K.; Chen, X. Intake of dietary flavonoids in relation to bone loss among US adults: A promising strategy for improving bone health. Food Funct. 2024, 15, 766–778. [Google Scholar] [CrossRef] [PubMed]
- Sha, A.M.; Garib, B.T.; Azeez, S.H.; Gul, S.S. Effects of curcumin gel on osteoclastogenic bone markers in experimental periodontitis and alveolar bone loss in wistar rats. J. Dent. Sci. 2021, 16, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, C.A.; Ali, K.M.; Al-Rawi, R.A.; Gul, S.S. Effects of curcumin and tetracycline gel on experimental induced periodontitis as an anti-inflammatory, osteogenesis promoter and enhanced bone density through altered Iron levels: Histopathological study. Antibiotics 2022, 11, 521. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, D.; Liu, S.; Zhang, X.; Yao, Z.; Chen, H.; Zhou, C.; Zhou, T.; Xu, C. The properties of linezolid, rifampicin, and vancomycin, as well as the mechanism of action of pentamidine, determine their synergy against Gram-negative bacteria. Int. J. Mol. Sci. 2023, 24, 13812. [Google Scholar] [CrossRef]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Prateeksha Yadav, D.K.; Tripathi, Y.B.; Sinha, R.A. Anti-biofilm and antibacterial efficacy of phytochemicals: Current trends and future perspectives. Biomed. Pharmacother. 2019, 111, 1496–1508. [Google Scholar] [CrossRef]
- Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev. 2020, 120, 9790–9833. [Google Scholar] [CrossRef]
- Miller, C.R.; Monk, J.M.; Szubin, R.; Berti, A.D. Rapid resistance development to three antistaphylococcal therapies in antibiotic-tolerant Staphylococcus aureus bacteremia. PLoS ONE 2021, 16, e0258592. [Google Scholar] [CrossRef]
Coating Technique | Description | Advantages | Common Applications | Implant Material | Reference |
---|---|---|---|---|---|
Physical Vapor Deposition (PVD) | A vacuum-based process that deposits thin films onto a substrate by vaporizing a solid material. |
| Orthopedic and dental implants | Titanium alloys, Stainless steel | [26,27,28] |
Chemical Vapor Deposition (CVD) | A chemical process used to deposit high-purity coatings on implant surfaces. |
| Biomedical sensors, stents, implants | Titanium alloys, Cobalt-Chrome alloys | [29,30,31,32] |
Plasma Spray Coating | Uses a high-temperature plasma torch to spray molten coating material onto a surface. |
| Hydroxyapatite coatings for bone implants | Titanium, Cobalt-Chrome alloys | [33,34,35,36] |
Electrophoretic Deposition (EPD) | Applies an electric field to deposit charged particles from a suspension onto a surface. |
| Bioceramic coatings, drug delivery coatings | Titanium, Stainless steel | [37,38,39] |
Dip Coating | Involves immersing an implant into a coating solution, then withdrawing it to form a uniform layer. |
| Drug-loaded coatings, antibacterial coatings | Titanium, Stainless steel | [26,27,28,40] |
Spin Coating | Deposits a thin liquid film onto a spinning surface to achieve uniformity. |
| Bioactive coatings for sensors and micro-devices | Titanium, Polymers | [29,30,31,32] |
Sol-Gel Coating | A solution-based technique where a liquid precursor undergoes gelation to form a thin film. |
| Bone implants, bioactive glasses, antibacterial coatings | Titanium, Bioactive glass | [33,34,35,36] |
Hydroxyapatite (HA) Coating | A calcium phosphate-based bioactive ceramic coating to improve osseointegration. |
| Orthopedic and dental implants | Titanium, Titanium alloys | [37,38] |
Antibiotic | Description | Methods of Coating Application | Common Applications | Side Effects | Reference |
---|---|---|---|---|---|
Gentamicin | Broad-spectrum aminoglycoside effective against Gram-negative bacteria. | Dip-coating, Electrophoretic Deposition (EPD), Plasma Spray Coating | Orthopedic implants, dental implants, catheters | Nephrotoxicity, Ototoxicity, Neuromuscular blockade | [53,54] |
Vancomycin | Glycopeptide antibiotic effective against Gram-positive bacteria, including MRSA. | Sol-gel coating, Layer-by-layer assembly, Spray Coating | Bone implants, joint prostheses, vascular grafts | Nephrotoxicity, Red Man Syndrome, Ototoxicity | [55,56] |
Ciprofloxacin | Fluoroquinolone with broad-spectrum activity, effective against biofilm-forming bacteria. | Plasma Spray Coating, Dip Coating, Electro spraying | Titanium-based orthopedic implants, dental implants | Tendonitis, Peripheral neuropathy, GI disturbances | [57,58] |
Rifampin | Effective against biofilm-associated Staphylococcus species, often combined with other antibiotics. | Layer-by-layer assembly, Sol-gel Coating | Coating on titanium and polymer-based implants | Hepatotoxicity, GI discomfort, Red/orange discoloration of bodily fluids | [59,60] |
Doxycycline | Tetracycline-class antibiotic with anti-inflammatory properties. | Dip-coating, Electrophoretic Deposition (EPD) | Orthopedic implants, bone grafts | Photosensitivity, GI upset, Esophagitis | [61,62] |
Tobramycin | Aminoglycoside is used against Gram-negative bacteria, particularly Pseudomonas aeruginosa. | Spray Coating, Sol-gel, Electrospinning | Dental and orthopedic implants | Nephrotoxicity, Ototoxicity, Neuromuscular blockade | [63,64] |
Clindamycin | Lincosamide antibiotics are effective against anaerobic and Gram-positive bacteria. | Dip-coating, Plasma Spray Coating | Bone implants, titanium implants | Pseudomembranous colitis, GI disturbances, Rash | [57,65] |
Linezolid | Oxazolidinone-class antibiotic used against multidrug-resistant Gram-positive bacteria. | Layer-by-layer assembly, Electrophoretic Deposition (EPD) | Joint prostheses, fracture fixation devices | Myelosuppression, Peripheral neuropathy, Serotonin syndrome | [66,67] |
Coatings | Antimicrobial Agent | Research Findings/Results | Advantages | Challenges | Reference |
---|---|---|---|---|---|
Silver-based (AgNPs) coatings | Silver nanoparticles (AgNPs) |
|
|
| [79,80] |
|
|
| |||
Copper-Based Coatings | Copper oxide (CuO), Copper nanoparticles |
|
|
| [81,82] |
|
| ||||
|
|
| |||
Polydopamine Coatings | No specific antimicrobial agent (self-polymerization of dopamine) |
|
|
| [83,84,85] |
|
|
| |||
Titanium Dioxide (TiO2) Coatings | TiO2 (Photocatalytic) |
|
|
| [86,87,88] |
|
|
| |||
Hydroxyapatite (HA) with metal and Antimicrobial Agents | Silver, Copper, Antibiotics (e.g., Rifampicin) |
|
|
| [89,90] |
|
| ||||
Ceramic Coatings (e.g., Zirconia, Alumina) | Metal oxides (e.g., TiO2, ZnO) |
|
|
| [53,91,92,93] |
|
|
|
Phytochemical | Source | Mechanism in Bone Healing | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|
ssCurcumin | Turmeric (Curcuma longa) | Enhances osteoblast differentiation, anti-inflammatory, antioxidant properties. |
|
| [110,111] |
|
| ||||
| |||||
Quercetin | Onion, Apples, Berries | Increases osteoblast activity and inhibits osteoclasts. |
|
| [112,113] |
|
| ||||
| |||||
Genistein | Soybeans | Phytoestrogen that mimics estrogen, stimulates osteoblasts. |
|
| [114,115] |
|
| ||||
Resveratrol | Grapes, Red wine | Stimulates osteoblast activity, reduces oxidative stress. |
|
| [116,117] |
|
| ||||
Epigallocatechin Gallate (EGCG) | Green Tea | Enhances osteoblast function, inhibits osteoclast differentiation. |
|
| [33,34] |
|
| ||||
Berberine | Berberis species | Enhances osteoblast activity, reduces inflammation. |
|
| [31,118] |
|
| ||||
Catechins | Green Tea | Antioxidant, reduces inflammation, promotes osteoblast activity. |
|
| [119,120] |
|
|
Coating Type | Advantages | Disadvantages | Reference |
---|---|---|---|
Phytochemical Coatings (e.g., Curcumin, Quercetin, Resveratrol) |
|
| [76,155] |
Antibiotic Coatings (e.g., Gentamicin, Vancomycin, Ciprofloxacin) |
|
| [156] |
Metal/metaloxide Nanoparticle Coatings (e.g., Silver, Zinc, Titanium, Copper) |
|
| [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebenezer, P.; Kumara, S.P.S.N.B.S.; Senevirathne, S.W.M.A.I.; Bray, L.J.; Wangchuk, P.; Mathew, A.; Yarlagadda, P.K.D.V. Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals. Nanomaterials 2025, 15, 1023. https://doi.org/10.3390/nano15131023
Ebenezer P, Kumara SPSNBS, Senevirathne SWMAI, Bray LJ, Wangchuk P, Mathew A, Yarlagadda PKDV. Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals. Nanomaterials. 2025; 15(13):1023. https://doi.org/10.3390/nano15131023
Chicago/Turabian StyleEbenezer, Preetha, S. P. S. N. Buddhika Sampath Kumara, S. W. M. A. Ishantha Senevirathne, Laura J. Bray, Phurpa Wangchuk, Asha Mathew, and Prasad K. D. V. Yarlagadda. 2025. "Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals" Nanomaterials 15, no. 13: 1023. https://doi.org/10.3390/nano15131023
APA StyleEbenezer, P., Kumara, S. P. S. N. B. S., Senevirathne, S. W. M. A. I., Bray, L. J., Wangchuk, P., Mathew, A., & Yarlagadda, P. K. D. V. (2025). Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals. Nanomaterials, 15(13), 1023. https://doi.org/10.3390/nano15131023