Influence of Content and Type of Lanthanide on the Structure of Ln2O3-Covered Carbon Nanoflakes: The EPR and XPS Study
Abstract
1. Introduction
2. Experiment
2.1. Synthesis of Carbon Nanoflakes and Ln2O3/CNF Composites
2.2. Methods of Investigation
3. Results
3.1. Physicochemical Properties of Carbon Matrix
3.2. Physicochemical Properties of Ln2O3/CNF Composites
4. Discussion
4.1. The Effect of Carbon Nanoflakes on the EPR Spectra
4.2. Type of Ln3+ (Ln = La, Nd or Gd)
4.3. Effect of Gd2O3 Weight Content on the Electronic Structure of the Gd2O3/CNF Composites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, N.; Srivastava, V.C. La2O3 Nanorods—Reduced Graphene Oxide Composite as a Novel Catalyst for Dimethyl Carbonate Production via Transesterification Route. Mater. Today Commun. 2021, 29, 102974. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Selvapandiyan, M.; Sankar, A. Electrochemical Performance of Reduced Graphene Oxide (RGO) Decorated Lanthanum Oxide (La2O3) Composite Nanostructure as Asymmetric Supercapacitors. Inorg. Chem. Commun. 2022, 139, 109331. [Google Scholar] [CrossRef]
- Li, Y.; Sun, K.; Cheng, P.; Li, J.; Liu, D.; He, D. The Synergy of La2O3 Nanoparticles and Graphene for Advanced Li-S Batteries. Chem. Sel. 2022, 7, e202104328. [Google Scholar] [CrossRef]
- Akhtar, M.; Abdou, S.N.; Abdullah, T.; Mahmoud, M.H.H.; Sabir, Z.; Khattak, Z.A.K.; Zafar, S.; Zulfiqar, S. Wet chemical synthesis of C@Nd2O3/rGO nanocomposite: A visible light trigger photocatalyst for efficient water remediation. Opt. Mater. 2023, 135, 113255. [Google Scholar] [CrossRef]
- Qin, H.; Guo, M.; Zhou, C.; Li, J.; Jing, X.; Wan, Y.; Song, W.; Yu, H.; Peng, G.; Yao, Z.; et al. Enhancing singlet oxygen production of dioxygen activation on the carbon-supported rare-earth oxide nanocluster and rare-earth single atom catalyst to remove antibiotics. Water Res. 2024, 252, 121184. [Google Scholar] [CrossRef]
- Paul, R.; Chatterjee, D.; Das Ghosh, L.; Narayanswamy, V.; Singh, M.P.; Agarwal, M.; Ghosh, D.; Radhakrishna, M.; Tiwary, C.S.; Provazník, I.; et al. Synthesis, characterization and In-vitro studies of CNT/Gd2O3 hybrid structure. Carbon Trends 2023, 11, 100272. [Google Scholar] [CrossRef]
- Wang, F.H.; Bae, K.; Huang, Z.W.; Xue, J.M. Two-photon graphene quantum dot modified Gd2O3 nanocomposites as a dual-mode MRI contrast agent and cell labelling agent. Nanoscale 2018, 10, 5642–5649. [Google Scholar] [CrossRef] [PubMed]
- Chawda, N.; Basu, M.; Majumdar, D.; Raju, P.; Mahapatra, S.K.; Banerjee, I. Engineering of Gadolinium-Decorated Graphene Oxide Nanosheets for Multimodal Bioimaging and Drug Delivery. ACS Omega 2019, 4, 12470–12479. [Google Scholar] [CrossRef]
- Garifo, S.; Vangijzegem, T.; Stanicki, D.; Laurent, S. A Review on the Design of Carbon-Based Nanomaterials as MRI Contrast Agents. Molecules 2024, 29, 1639. [Google Scholar] [CrossRef]
- Suslova, E.V.; Pavlova, O.S.; Zoirova, Z.O.; Shashurin, D.A.; Kaplin, I.Y.; Chelkov, G.A. Gd2O3@C and Gd2O3@SiO2 Nanoparticles as Contrast Agents for Magnetic Resonance Imaging. Russ. J. Appl. Chem. 2025, 98, 125–135. [Google Scholar]
- Kim, J.; Bar-Ness, D.; Si-Mohamed, S.; Coulon, P.; Blevis, I.; Douek, P.; Cormode, D.P. Assessment of Candidate Elements for Development of Spectral Multi energy CT Specific Contrast Agents. Sci. Rep. 2018, 8, 12119. [Google Scholar] [CrossRef]
- Suslova, E.V.; Kozlov, A.P.; Shashurin, D.A.; Rozhkov, V.A.; Sotenskii, R.V.; Maximov, S.V.; Savilov, S.V.; Medvedev, O.S.; Chelkov, G.A. New Composite Contrast Agents Based on Ln and Graphene Matrix for Multi-Energy Computed Tomography. Nanomaterials 2022, 12, 4110. [Google Scholar] [CrossRef] [PubMed]
- Suslova, E.; Shashurin, D.; Kozlov, A.; Maximov, S.; Rozhkov, V.; Sotenskii, R.; Savilov, S.; Medvedev, O.; Chelkov, G. Development of La-graphene composite contrasting agents for photon-counting computed tomography. Funct. Mater. Lett. 2022, 15, 2250029. [Google Scholar] [CrossRef]
- Shashurin, D.A.; Suslova, E.V.; Rozhkov, V.A.; Sotenskii, R.V.; Medvedev, O.S.; Shelkov, G.A. Gd2O3—Carbon Nano flakes (CNFs) as Contrast Agents for Photon-Counting Computed Tomography (PCCT). Russ. J. Appl. Chem. 2023, 96, 410–416. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Acevedo-Guzmán, D.A.; Meza-Laguna, V.; Álvarez-Zauco, E.; Hurta, L.; Serrano, M.; Kakazey, M.; Basiuk, E.V. High-energy ball-milling preparation and characterization of Ln2O3−graphite nanocomposites. Mater. Today Commun. 2021, 26, 102030. [Google Scholar] [CrossRef]
- Hagiwara, R.; Ito, M.; Ito, Y. Graphite intercalation compounds of lanthanide metals prepared in molten chlorides. Carbon 1996, 34, 1591–1593. [Google Scholar] [CrossRef]
- Cahen, S.; Vangelisti, R. Versatile behavior upon intercalation by chemical vapor transport of lanthanide trichlorides into graphite. Carbon 2011, 49, 1834–1841. [Google Scholar] [CrossRef]
- Daneshvar, F.; Chen, H.; Noh, K.; Sue, H.J. Critical challenges and advances in the carbon nanotube-metal interface for next-generation electronics. Nanoscale Adv. 2021, 3, 942–962. [Google Scholar] [CrossRef]
- Osipov, V.Y.; Aleksenskiy, A.E.; Vul’, A.Y.; Takai, K. Magnetic studies of a detonation nanodiamond with the surface modified by gadolinium ions. Phys. Solid State 2015, 57, 2314–2319. [Google Scholar] [CrossRef]
- Gaiduk, Y.S.; Taratyn, I.A.; Usenko, A.E.; Ivashchenko, D.V.; Pankov, V.V. Single-electrode gas sensors based on In2O3 composite/graphene. Neorganičeskie Mater. 2024, 60, 52–63. [Google Scholar] [CrossRef]
- Avasthi, A.; Caro, C.; Pozo-Torres, E.; Leal, M.P.; Garcia-Martin, M.L. Magnetic Nanoparticles as MRI Contrast Agents. Top. Curr. Chem. (Z) 2020, 378, 40. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, M.; Li, G.; Zheng, F.; Zhang, P. Strong bonding and high spin-polarization of lanthanide atoms on vacancies in graphene. AIP Adv. 2017, 7, 105207. [Google Scholar] [CrossRef]
- Hamed, M.; Chinnam, S.; Bedair, A.; Emara, S.; Mansour, F.R. Carbon Quantum Dots from Natural Sources as Sustainable Probes for Metal Ion Sensing: Preparation, Characterizations and Applications. Talanta Open 2024, 10, 100348. [Google Scholar] [CrossRef]
- Ziatdinov, A.M.; Saenko, N.S.; Skrylnik, P.G. Molecular and Electronic Structures and Magnetic Properties of Multilayer Graphene Nanoclusters and Their Changes under the Influence of Adsorbed Molecules. Russ. Chem. Bull. 2017, 66, 837–848. [Google Scholar] [CrossRef]
- Panich, A.M.; Sergeev, N.A. Towards Determination of Distances Between Nanoparticles and Grafted Paramagnetic Ions by NMR Relaxation. Appl. Magn. Reson. 2018, 49, 195–208. [Google Scholar] [CrossRef]
- Abaszade, R.G.; Mammadov, A.G.; Khanmammadova, E.A.; Namazov, R.A.; Melikova, S.Z.; Bayramov, M.A. Electron paramagnetic resonance study of gadoliniumum doped graphene oxide. J. Ovonic Res. 2023, 19, 259–263. [Google Scholar] [CrossRef]
- Ulyanov, A.N.; Kuznetsova, N.N.; Savilov, S.V. Carbon Nanomaterials. Electronic Paramagnetic Resonance. Russ. J. Phys. Chem. A 2025, 99, 529–536. [Google Scholar] [CrossRef]
- Lan, M.; Beghein, N.; Charlier, N.; Gallez, B. Carbon Blacks as EPR Sensors for Localized Measurements of Tissue Oxygenation. Magn. Reson. Med. 2004, 51, 1272–1278. [Google Scholar] [CrossRef]
- Suslova, E.V.; Ulyanov, A.N.; Kozlov, A.P.; Shashurin, D.A.; Savilov, S.V.; Chelkov, G.A. Composition and Electronic Structure of La2O3/CNFs@C Core-Shell Nanoparticles with Variable Oxygen Content. Nanomaterials 2023, 13, 2945. [Google Scholar] [CrossRef]
- Tadyszak, K.; Chybczyńska, K.; Ławniczak, P.; Zalewska, A.; Cieniek, B.; Gonet, M.; Murias, M. Magnetic and electric properties of partially reduced graphene oxide aerogels. J. Magn. Magn. Mater. 2019, 492, 165656. [Google Scholar] [CrossRef]
- Sanivarapu, S.R.; Lawrence, J.B.; Sreedhar, G. Role of Surface Oxygen Vacancies and Lanthanide Contraction Phenomenon of Ln(OH)3 (Ln = La, Pr, and Nd) in Sulfide-Mediated Photoelectrochemical Water Splitting. ACS Omega 2018, 3, 6267–6278. [Google Scholar] [CrossRef] [PubMed]
- Chesnokov, V.V.; Chichkan, A.S.; Bedilo, A.F.; Shuvarakova, E.I.; Parmon, V.N. Template method for graphene synthesis. Dokl. Chem. 2019, 488, 508–512. [Google Scholar] [CrossRef]
- Torres, D.; Pinilla, J.L.; Moliner, R.; Suelves, I. On the oxidation degree of few-layer graphene oxide sheets obtained from chemically oxidized multiwall carbon nanotubes. Carbon 2015, 81, 405–417. [Google Scholar] [CrossRef]
- Vicente, J.L.; Albesa, A.G. Description of Adsorbed Phases on Carbon Surfaces: A Comparative Study of Several Graphene Models. In Graphene Simulation; Gong, J., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Teterin, Y.A.; Teterin, A.Y. Structure of X-ray photoelectron spectra of lanthanide compounds. Russ. Chem. Rev. 2002, 71, 347–381. [Google Scholar] [CrossRef]
- Li, J.P.H.; Zhou, X.; Pang, Y.; Zhu, L.; Vovk, E.I.; Gong, L.; Bavel, A.P.; Li, S.; Yang, Y. Understanding of binding energy calibration in XPS of lanthanum oxide by in situ treatment. Phys. Chem. Chem. Phys. 2019, 21, 22351–22358. [Google Scholar] [CrossRef] [PubMed]
- Savilov, S.; Suslova, E.; Epishev, V.; Tveritinova, E.; Zhitnev, Y.; Ulyanov, A.; Maslakov, K.; Isaikina, O. Conversion of Secondary C3-C4 Aliphatic Alcohols on Carbon Nanotubes Consolidated by Spark Plasma Sintering. Nanomaterials 2021, 11, 352. [Google Scholar] [CrossRef]
- Vitiello, G.; De Falco, G.; Picca, F.; Commodo, M.; D’Errico, G.; Minutolo, P.; D’Anna, A. Role of radicals in carbon clustering and soot inception: A combined EPR and Raman spectroscopic study. Combust. Flame 2019, 205, 286–294. [Google Scholar] [CrossRef]
- Ziatdinov, A.M.; Saenko, N.S.; Skrylnik, P.G. Graphene Oxide and Its Thermally Reduced Nanostructured Derivatives: Synthesis and Comprehensive Study of Properties. Russ. J. Inorg. Chem. 2020, 65, 133–145. [Google Scholar] [CrossRef]
- Augustyniak-Jabłokow, M.A.; Strzelczyk, R.; Fedaruk, R. Localization of conduction electrons in hydrothermally reduced graphene oxide: Electron paramagnetic resonance studies. Carbon 2020, 168, 665–672. [Google Scholar] [CrossRef]
- Manna, K.; Srivastava, S.K. Contrasting Role of Defect-Induced Carbon Nanotubes in Electromagnetic Interference Shielding. J. Phys. Chem. C 2018, 122, 19913–19920. [Google Scholar] [CrossRef]
- Shames, A.I.; Mogilyansky, D.; Panich, A.M.; Sergeev, N.A. Polycrystalline micro- and nano-diamonds prepared by a shock wave compression method. Phys. Status Solidi A 2015, 212, 2400–2409. [Google Scholar] [CrossRef]
- Tadyszak, K.; Musiał, A.; Ostrowski, A.; Wychowaniec, J.K. Unraveling Origins of EPR Spectrum in Graphene Oxide Quantum Dots. Nanomaterials 2020, 10, 798. [Google Scholar] [CrossRef] [PubMed]
- Tadyszak, K.; Wereszczyńska, B.; Gonet, M. CT, MR and EPR Imaging of Graphene Oxide Aerogels. Solid State Sci. 2020, 109, 106402. [Google Scholar] [CrossRef]
- Diamantopoulou, A.; Glenis, S.; Zolnierkiwicz, G.; Guskos, N.; Likodimos, V. Magnetism in pristine and chemically reduced graphene oxide. J. Appl. Phys. 2017, 121, 043906. [Google Scholar] [CrossRef]
- Wang, B.; Fielding, A.J.; Dryfe, R.A.W. Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response. J. Phys. Chem. C 2019, 123, 22556–22563. [Google Scholar] [CrossRef]
- Osipov, V.Y.; Boukhvalov, D.W.; Takai, K. Structure and Magnetic Properties of Superoxide Radical Anion Complexes with Low Binding Energy at the Graphene Edges. Russ. J. Coord. Chem. 2020, 46, 738–745. [Google Scholar] [CrossRef]
- Nikitin, A.P.; Valnyukova, A.S.; Furega, R.I.; Sozinov, S.A.; Ismagilov, Z.R.; Ismagilov, Z.R.; Ismagilov, Z.R. Development of a Recording Method of Coals’s EPR Spectra. Vestn. Kuzbass State Tech. Univ. 2019, 129, 76–82. [Google Scholar] [CrossRef]
- Nodaraki, L.E.; Liu, J.; Ariciu, A.; Ortu, F.; Oakley, M.S.; Birnoschi, L.; Gransbury, G.K.; Cobb, P.J.; Emerson-king, J.; Chilton, N.F.; et al. Chemical Science Metal—Carbon bonding in early lanthanide substituted cyclopentadienyl complexes probed by pulsed EPR spectroscopy. Chem. Sci. 2024, 15, 3003–3010. [Google Scholar] [CrossRef]
- Aminov, L.K.; Gafurov, M.R.; Kurkin, I.N.; Malkin, B.Z.; Rodionov, A.A. Superhyperfine Structure of the EPR Spectra of Nd3+ Impurity Ions in Fluorite CaF2. Phys. Solid State 2018, 60, 912–915. [Google Scholar] [CrossRef]
- Gafurov, M.R.; Ivanshin, V.A.; Kurkin, I.N.; Rodionova, M.P.; Keller, H.; Gutmann, M.; Staub, U. EPR study of some rare-earth ions (Dy3+, Tb3+, and Nd3+) in YBa2Cu3O6-compound. J. Magn. Reson. 2003, 161, 210–214. [Google Scholar] [CrossRef]
- Fuks, H.; Typek, J.; Berkowski, M.; Głowacki, M.; Tomaszewicz, E. EPR study of RE3+ (RE = Nd, Gd, Dy) doped CdMoO4 single crystal. Mater. Chem. Phys. 2019, 221, 156–167. [Google Scholar] [CrossRef]
- Gridnev, I.D.; Osipov, V.Y. Transition metal atoms grafted on the nanodiamonds surface: Identification and guest–host spin–spin interactions. Mendeleev Commun. 2022, 32, 143–151. [Google Scholar] [CrossRef]
- Fragkogiannis, C.; Belles, L.; Gournis, D.P.; Deligiannakis, Y.; Georgakilas, V. Spin-Injection in Graphene: An EPR and Raman Study. Chem. Eur. J. 2023, 29, e202301720. [Google Scholar] [CrossRef]
- Augustyniak-Jabłokow, M.A.; Tadyszak, K.; Strzelczyk, R.; Fedaruk, R.; Carmieli, R. Slow spin relaxation of paramagnetic centers in graphene oxide. Carbon 2019, 152, 98–105. [Google Scholar] [CrossRef]
- Mominuzzaman, S.; Ebisu, H.; Soga, T.; Jimbo, T.; Umeno, M. Phosphorus doping and defect studies of diamond-like carbon films by pulsed laser deposition using cam_phoric carbon target. Diam. Relat. Mater. 2001, 10, 984–988. [Google Scholar] [CrossRef]
- Panich, A.M.; Shames, A.I.; Tsindlekht, M.I.; Osipov, V.Y.; Patel, M.; Savaram, K.; He, H. Structure and Magnetic Properties of Pristine and Fe-Doped Micro- and Nanographenes. J. Phys. Chem. C 2016, 120, 3042–3053. [Google Scholar] [CrossRef]
Sample | Linewidth, G | g-Factor | Spin Number (N) (1016, Spin·g−1) | |||
---|---|---|---|---|---|---|
ΔHn | ΔHb | gn | gb | Nn | Nb | |
CNFs_ox | 2.928 | 25.524 | 2.0020 | 2.0015 | 227.5 | 748.8 |
CNFs_ox_400 | 5.61 | 36.74 | 2.0037 | 2.0029 | 71.1 | 882.9 |
20La2O3/CNFs | 7.908 | 34.6 | 2.0022 | 2.0019 | 129.2 | 633.7 |
20Nd2O3/CNFs | 4.653 | 22.97 | 2.0017 | 2.0010 | 4.67 | 21.9 |
20Gd2O3/CNFs | 4.501 | 21.39 | 2.0018 | 2.0015 | 12.3 | 50.7 |
30Gd2O3/CNFs | 3.9 | 15.19 | 2.0016 | 2.0011 | 5.28 | 17.3 |
40Gd2O3/CNFs | 3.91 | 15.84 | 2.0017 | 2.0013 | 4.03 | 13.3 |
50Gd2O3/CNFs | 4.4 | 17.96 | 2.0033 | 2.0029 | 4.44 | 13.1 |
Sample | SBET, m2·g−1 | cb, Spin («Bulk» Electrons) | cn, Spin («Surface» Electrons) |
---|---|---|---|
CNFs_ox | 401 | 2.5 | 8.4 |
CNFs_ox_400 | 374 | 0.9 | 10.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savilov, S.V.; Suslova, E.V.; Ulyanov, A.N.; Maslakov, K.I.; Maximov, S.V.; Shashurin, D.A.; Chelkov, G.A. Influence of Content and Type of Lanthanide on the Structure of Ln2O3-Covered Carbon Nanoflakes: The EPR and XPS Study. Nanomaterials 2025, 15, 1016. https://doi.org/10.3390/nano15131016
Savilov SV, Suslova EV, Ulyanov AN, Maslakov KI, Maximov SV, Shashurin DA, Chelkov GA. Influence of Content and Type of Lanthanide on the Structure of Ln2O3-Covered Carbon Nanoflakes: The EPR and XPS Study. Nanomaterials. 2025; 15(13):1016. https://doi.org/10.3390/nano15131016
Chicago/Turabian StyleSavilov, Serguei V., Evgeniya V. Suslova, Alexander N. Ulyanov, Konstantin I. Maslakov, Sergey V. Maximov, Denis A. Shashurin, and Georgy A. Chelkov. 2025. "Influence of Content and Type of Lanthanide on the Structure of Ln2O3-Covered Carbon Nanoflakes: The EPR and XPS Study" Nanomaterials 15, no. 13: 1016. https://doi.org/10.3390/nano15131016
APA StyleSavilov, S. V., Suslova, E. V., Ulyanov, A. N., Maslakov, K. I., Maximov, S. V., Shashurin, D. A., & Chelkov, G. A. (2025). Influence of Content and Type of Lanthanide on the Structure of Ln2O3-Covered Carbon Nanoflakes: The EPR and XPS Study. Nanomaterials, 15(13), 1016. https://doi.org/10.3390/nano15131016