Fabricating Planar Perovskite Solar Cells through a Greener Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Precursor Solutions
2.2. Fabrication of the Perovskite Solar Cells
2.3. Device Characterization
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Zhang, L.; Mei, L.; Wang, K.; Lv, Y.; Zhang, S.; Lian, Y.; Liu, X.; Ma, Z.; Xiao, G.; Liu, Q. Advances in the application of perovskite materials. Nano-Micro Lett. 2023, 15, 177. [Google Scholar] [CrossRef] [PubMed]
- Suresh Kumar, N.; Chandra Babu Naidu, K. A review on perovskite solar cells (PSCs), materials and applications. J. Mater. 2021, 7, 940–956. [Google Scholar] [CrossRef]
- Bi, S.; Zhao, W.; Sun, Y.; Jiang, C.; Liu, Y.; He, Z.; Li, Q.; Song, J. Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Adv. 2021, 3, 6659–6668. [Google Scholar] [CrossRef] [PubMed]
- Almora, O.; Baran, D.; Bazan, G.C.; Cabrera, C.I.; Erten-Ela, S.; Forberich, K.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; Jacobsson, T.J.; et al. Device Performance of Emerging Photovoltaic Materials (Version 3). Adv. Energy Mater. 2023, 13, 2203313. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef]
- Lin, Q.; Armin, A.; Nagiri, R.C.R.; Burn, P.L.; Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 2015, 9, 106–112. [Google Scholar] [CrossRef]
- Giorgi, G.; Fujisawa, J.-I.; Segawa, H.; Yamashita, K. Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. J. Phys. Chem. Lett. 2013, 4, 4213–4216. [Google Scholar] [CrossRef]
- Yang, M.; Tian, T.; Fang, Y.; Li, W.-G.; Liu, G.; Feng, W.; Xu, M.; Wu, W.-Q. Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nat. Sustain. 2023, 6, 1455–1464. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. A review on energy band-gap engineering for perovskite photovoltaics. Sol. Rrl 2019, 3, 1900304. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Tan, S.; Duan, Y.; Wang, Z.-K.; Yang, Y. Opportunities and Challenges of Lead-Free Perovskite Optoelectronic Devices. Trends Chem. 2019, 1, 368–379. [Google Scholar] [CrossRef]
- Huang, F.; Pascoe, A.R.; Wu, W.; Ku, Z.; Peng, Y.; Zhong, J.; Caruso, R.A.; Cheng, Y. Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells. Adv. Mater. 2017, 29, 1601715. [Google Scholar] [CrossRef] [PubMed]
- Sajid, S.; Alzahmi, S.; Wei, D.; Salem, I.B.; Park, J.; Obaidat, I.M. Diethanolamine Modified Perovskite-Substrate Interface for Realizing Efficient ESL-Free PSCs. Nanomaterials 2023, 13, 250. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Yang, C.; Wang, Z.; Yan, C.; Fang, C. Solvent engineering for the formation of high-quality perovskite films: A review. Results Eng. 2023, 18, 101158. [Google Scholar] [CrossRef]
- Gu, L.; Li, R.; Wang, S.; Xu, Y.; Qian, B.; Fan, J.; Ni, J.; Yuan, N.; Ding, J. Vertically Arranged Internal Grains and Superior Surface Textures of Perovskite Films Enabled by Ligand–Solvent Engineering. Sol. Rrl 2021, 5, 2100606. [Google Scholar] [CrossRef]
- Taylor, A.D.; Sun, Q.; Goetz, K.P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 2021, 12, 1878. [Google Scholar] [CrossRef]
- Ghosh, S.; Mishra, S.; Singh, T. Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. Adv. Mater. Interfaces 2020, 7, 2000950. [Google Scholar] [CrossRef]
- Li, M.-J.; Zeng, T. The deleterious effects of N,N-dimethylformamide on liver: A mini-review. Chem. Biol. Interact. 2019, 298, 129–136. [Google Scholar] [CrossRef]
- Wrbitzky, R. Liver function in workers exposed to N, N-dimethylformamide during the production of synthetic textiles. Int. Arch. Occup. Environ. Health 1999, 72, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Vidal, R.; Alberola-Borràs, J.-A.; Habisreutinger, S.N.; Gimeno-Molina, J.-L.; Moore, D.T.; Schloemer, T.H.; Mora-Seró, I.; Berry, J.J.; Luther, J.M. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 2021, 4, 277–285. [Google Scholar] [CrossRef]
- Tzoganakis, N.; Chatzimanolis, K.; Spiliarotis, E.; Veisakis, G.; Tsikritzis, D.; Kymakis, E. An efficient approach for controlling the crystallization, strain, and defects of the perovskite film in hybrid perovskite solar cells through antisolvent engineering. Sustain. Energy Fuels 2023, 7, 4136–4149. [Google Scholar] [CrossRef]
- Sajid, S.; Khan, S.; Khan, A.; Khan, D.; Issakhov, A.; Park, J. Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells. Sol. Energy 2021, 225, 1001–1008. [Google Scholar] [CrossRef]
- Kim, H.J.; Gong, O.Y.; Kim, Y.J.; Yoon, G.W.; Han, G.S.; Shin, H.; Jung, H.S. Environmentally Viable Solvent Management in Perovskite Solar Cell Recycling Process. ACS Energy Lett. 2023, 8, 4330–4337. [Google Scholar] [CrossRef]
- Park, S.H.; Jin, I.S.; Jung, J.W. Green solvent engineering for environment-friendly fabrication of high-performance perovskite solar cells. Chem. Eng. J. 2021, 425, 131475. [Google Scholar] [CrossRef]
- Yue, Z.; Guo, H.; Cheng, Y. Toxicity of Perovskite Solar Cells. Energies 2023, 16, 4007. [Google Scholar] [CrossRef]
- Swartwout, R.; Patidar, R.; Belliveau, E.; Dou, B.; Beynon, D.; Greenwood, P.; Moody, N.; DeQuilettes, D.; Bawendi, M.; Watson, T. Predicting Low Toxicity and Scalable Solvent Systems for High-Speed Roll-to-Roll Perovskite Manufacturing. Sol. Rrl 2022, 6, 2100567. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X. Inactive (PbI2) 2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef]
- Fan, P.; Gu, D.; Liang, G.-X.; Luo, J.-T.; Chen, J.-L.; Zheng, Z.-H.; Zhang, D.-P. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 2016, 6, 29910. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Azevedo, J.; Araújo, J.P.; Santos, L.M.N.B.F.; Mendes, A. High purity and crystalline thin films of methylammonium lead iodide perovskites by a vapor deposition approach. Thin Solid Films 2018, 664, 12–18. [Google Scholar] [CrossRef]
- You, J.; Yang, Y.M.; Hong, Z.; Song, T.-B.; Meng, L.; Liu, Y.; Jiang, C.; Zhou, H.; Chang, W.-H.; Li, G.; et al. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 2014, 105, 183902. [Google Scholar] [CrossRef]
- Cao, X.; Hao, L.; Liu, Z.; Su, G.; He, X.; Zeng, Q.; Wei, J. All green solvent engineering of organic–inorganic hybrid perovskite layer for high-performance solar cells. Chem. Eng. J. 2022, 437, 135458. [Google Scholar] [CrossRef]
- Lee, J.-W.; Dai, Z.; Lee, C.; Lee, H.M.; Han, T.-H.; De Marco, N.; Lin, O.; Choi, C.S.; Dunn, B.; Koh, J. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 2018, 140, 6317–6324. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.C., Jr.; Schwartz, J.; Loo, Y.-L. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett. 2017, 3, 92–97. [Google Scholar] [CrossRef]
- Sajid, S.; Alzahmi, S.; Salem, I.B.; Obaidat, I.M. Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells. Nanomaterials 2022, 12, 3352. [Google Scholar] [CrossRef]
- Wu, N.; Yang, T.; Wang, Z.; Wu, Y.; Wang, Y.; Ma, C.; Li, H.; Du, Y.; Zhao, D.; Wang, S. Stabilizing Precursor Solution and Controlling Crystallization Kinetics Simultaneously for High-Performance Perovskite Solar Cells. Adv. Mater. 2023, 35, 2304809. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shi, T.; Li, X.; Zhou, B.; Cao, H.; Wang, Y. Origin of the high performance of perovskite solar cells with large grains. Appl. Phys. Lett. 2016, 108, 053302. [Google Scholar] [CrossRef]
- Liu, S.; Mao, J.; Pang, W.K.; Vongsvivut, J.; Zeng, X.; Thomsen, L.; Wang, Y.; Liu, J.; Li, D.; Guo, Z. Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2104281. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kim, H.-S.; Park, N.-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 2016, 49, 311–319. [Google Scholar] [CrossRef]
- Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S.M.; Choi, M.; Park, N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699. [Google Scholar] [CrossRef]
- Zhang, W.; Saliba, M.; Moore, D.T.; Pathak, S.K.; Hörantner, M.T.; Stergiopoulos, T.; Stranks, S.D.; Eperon, G.E.; Alexander-Webber, J.A.; Abate, A.; et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142. [Google Scholar] [CrossRef] [PubMed]
- Gedamu, D.; Asuo, I.M.; Benetti, D.; Basti, M.; Ka, I.; Cloutier, S.G.; Rosei, F.; Nechache, R. Solvent-Antisolvent Ambient Processed Large Grain Size Perovskite Thin Films for High-Performance Solar Cells. Sci. Rep. 2018, 8, 12885. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Nayak, P.K.; Zhang, W.; Stergiopoulos, T.; Snaith, H.J. Formation of Thin Films of Organic–Inorganic Perovskites for High-Efficiency Solar Cells. Angew. Chem. Int. Ed. 2015, 54, 3240–3248. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.-H.; Wang, F.; Adjokatse, S.; Zhao, N.; Loi, M.A. Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films. Adv. Funct. Mater. 2016, 26, 4653–4659. [Google Scholar] [CrossRef]
- deQuilettes, D.W.; Koch, S.; Burke, S.; Paranji, R.K.; Shropshire, A.J.; Ziffer, M.E.; Ginger, D.S. Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation. ACS Energy Lett. 2016, 1, 438–444. [Google Scholar] [CrossRef]
- Huang, H.; Liu, X.; Duan, M.; Ji, J.; Jiang, H.; Liu, B.; Sajid, S.; Cui, P.; Wei, D.; Li, Y.; et al. Dual Function of Surface Alkali-Gas Erosion on SnO2 for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 5039–5049. [Google Scholar] [CrossRef]
- Zhao, F.; Zhong, J.; Zhang, L.; Yong, P.; Lu, J.; Xu, M.; Cheng, Y.; Ku, Z. Two-Step Vapor-Solid Reaction for the Growth of High-Quality CsFA-Based Lead Halide Perovskite Thin Films. Sol. Rrl 2023, 7, 2300062. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef]
- Jiang, C.; Xie, Y.; Lunt, R.R.; Hamann, T.W.; Zhang, P. Elucidating the Impact of Thin Film Texture on Charge Transport and Collection in Perovskite Solar Cells. ACS Omega 2018, 3, 3522–3529. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.H.; Rahman, M.B.; Nur-E-Alam, M.; Das, N.; Soin, N.B.; Hatta, S.F.W.M.; Islam, M.A. Understanding the degradation factors, mechanism and initiatives for highly efficient perovskite solar cells. ChemNanoMat 2023, 9, e202200471. [Google Scholar] [CrossRef]
- Noel, N.K.; Habisreutinger, S.N.; Wenger, B.; Klug, M.T.; Hörantner, M.T.; Johnston, M.B.; Nicholas, R.J.; Moore, D.T.; Snaith, H.J. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 2017, 10, 145–152. [Google Scholar] [CrossRef]
- Chao, L.; Xia, Y.; Li, B.; Xing, G.; Chen, Y.; Huang, W. Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 2019, 5, 995–1006. [Google Scholar] [CrossRef]
- Chang, X.; Fan, Y.; Zhao, K.; Fang, J.; Liu, D.; Tang, M.-C.; Barrit, D.; Smilgies, D.-M.; Li, R.; Lu, J. Perovskite solar cells toward eco-friendly printing. Research 2021, 2021, 9671892. [Google Scholar] [CrossRef] [PubMed]
- Gardner, K.L.; Tait, J.G.; Merckx, T.; Qiu, W.; Paetzold, U.W.; Kootstra, L.; Jaysankar, M.; Gehlhaar, R.; Cheyns, D.; Heremans, P. Nonhazardous solvent systems for processing perovskite photovoltaics. Adv. Energy Mater. 2016, 6, 1600386. [Google Scholar] [CrossRef]
- Wang, J.; Di Giacomo, F.; Brüls, J.; Gorter, H.; Katsouras, I.; Groen, P.; Janssen, R.A.J.; Andriessen, R.; Galagan, Y. Highly efficient perovskite solar cells using non-toxic industry compatible solvent system. Sol. Rrl 2017, 1, 1700091. [Google Scholar] [CrossRef]
- Oez, S.; Burschka, J.; Jung, E.; Bhattacharjee, R.; Fischer, T.; Mettenboerger, A.; Wang, H.; Mathur, S. Protic ionic liquid assisted solution processing of lead halide perovskites with water, alcohols and acetonitrile. Nano Energy 2018, 51, 632–638. [Google Scholar] [CrossRef]
- Ramadan, A.J.; Noel, N.K.; Fearn, S.; Young, N.; Walker, M.; Rochford, L.A.; Snaith, H.J. Unravelling the improved electronic and structural properties of methylammonium lead iodide deposited from acetonitrile. Chem. Mater. 2018, 30, 7737–7743. [Google Scholar] [CrossRef]
- Hsieh, T.; Pylnev, M.; Palomares, E.; Wei, T. Exceptional long electron lifetime in methylammonium lead iodide perovskite solar cell made from aqueous lead nitrate precursor. Adv. Funct. Mater. 2020, 30, 1909644. [Google Scholar] [CrossRef]
- Sveinbjörnsson, K.; Thein, N.K.K.; Saki, Z.; Svanström, S.; Yang, W.; Cappel, U.B.; Rensmo, H.; Boschloo, G.; Aitola, K.; Johansson, E.M.J. Preparation of mixed-ion and inorganic perovskite films using water and isopropanol as solvents for solar cell applications. Sustain. Energy Fuels 2018, 2, 606–615. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, K.-J.; Huang, J.-H.; Wang, H.-J.; Chen, M.-G.; Zhang, Y.; Zheng, L.; Song, Y.-L. Solution-processed perovskite solar cells using environmentally friendly solvent system. Thin Solid Films 2017, 636, 639–643. [Google Scholar] [CrossRef]
- Hsieh, T.-Y.; Su, T.-S.; Ikegami, M.; Wei, T.-C.; Miyasaka, T. Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Mater. Today Energy 2019, 14, 100125. [Google Scholar] [CrossRef]
- Hsieh, T.-Y.; Wei, T.-C.; Wu, K.-L.; Ikegami, M.; Miyasaka, T. Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chem. Commun. 2015, 51, 13294–13297. [Google Scholar] [CrossRef] [PubMed]
Solvent | M.P. (°C) | B.P. (°C) | GHS Symbol |
---|---|---|---|
N-Methyl-2-pyrrolidone (NMP) | −24 | 204 | |
Dimethylformamide (DMF) | −61 | 153 | |
Dimethyl sulfoxide (DMSO) | 19 | 189 | |
Gamma-butyrolactone (GBL) | −43.53 | 204 | |
Triethyl phosphate (TEP) (used in this work) | 57 | 215 |
Device | Voc (V) | Jsc (mA cm−2) | FF (%) | PCE (%) |
---|---|---|---|---|
NMP-based PSC | 1.109 | 24.33 | 77.00 | 20.78 |
TEP-based PSC | 1.109 | 25.25 | 74.92 | 20.98 |
DMF-based PSC | 1.109 | 24.89 | 74.54 | 20.58 |
NMP-Based PSCs | Voc (V) | Jsc (mA cm−2) | FF (%) | PCE (%) |
1.109 | 23.69 | 76.29 | 20.05 | |
1.109 | 24.71 | 75.19 | 20.61 | |
1.109 | 24.18 | 77.20 | 20.70 | |
1.109 | 24.33 | 77.00 | 20.78 | |
TEP-based PSCs | 1.122 | 25.34 | 71.82 | 20.42 |
1.109 | 24.36 | 76.58 | 20.69 | |
1.109 | 25.25 | 74.22 | 20.78 | |
1.109 | 25.25 | 74.92 | 20.98 | |
DMF-based PSCs | 1.109 | 23.87 | 75.44 | 19.97 |
1.109 | 25.23 | 71.91 | 20.12 | |
1.109 | 24.04 | 75.73 | 20.19 | |
1.109 | 24.89 | 74.54 | 20.58 |
Solvent | Deposition Method | Perovskite Precursor | Device Configuration | PCE (%) | Ref. |
---|---|---|---|---|---|
CAN/MA/IPA | One-step | PbI2 + MAI | Planar: FTO/TiO2/C60/MAPbI3/Spiro-OMeTAD/Au | 19 | [52] |
MAAc | One-step | PbI2 + MACl | Planar: FTO/SnO2/Perovskite/MoO3/Spiro-OMeTAD/Au | 20.05 | [53] |
DMI/EA | Blade coating | Pb(Ac)2 + MAI | Planar: FTO/SnO2/Perovskite/Spiro-OMeTAD/Au | 18.26 | [54] |
GBL/EtOH/AcOH | One-step | Pb(Ac)2·3H2O + PbCl2 | Planar: FTO/TiO2/Perovskite/Spiro-OMeTAD/Au | 15.10 | [55] |
DMSO/2-MP/1-P | One-step | Pb(Ac)2·3H2O + PbCl2 + MAI | Planar: FTO/TiO2/Perovskite/Spiro-OMeTAD/Au | 16.50 | [56] |
MAP/ACN/DMSO/IPA | Two-step | PbI2/(FAI + MABr) | Mesoporous: FTO/c-TiO2/m-TiO2/Perovskite/Spiro-OMeTAD/Au | 15.46 | [57] |
ACN/MA | One-step | (PbI2 + MAI)/MACl | Planar: FTO/SnO2/Perovskite/Spiro-OMeTAD/Au | 18.70 | [58] |
H2O/IPA | Two-step | Pb(NO3)2/MAI | Mesoporous: FTO/c-TiO2/m-TiO2/Perovskite/Spiro-OMeTAD/Au | 16.70 | [59] |
H2O/IPA | Two-step | Pb(NO3)2/(FAI + FABr) | Mesoporous: FTO/c-TiO2/m-TiO2/Perovskite/Spiro-OMeTAD/Au | 13 | [60] |
H2O/IPA | Two-step | Pb(NO3)2/MAI | Mesoporous: FTO/c-TiO2/m-TiO2/Perovskite/Spiro-OMeTAD/Au | 13.7 | [61] |
H2O/IPA | Two-step | Pb(NO3)2/(MAI + MACl) | Mesoporous: FTO/c-TiO2/m-TiO2/Perovskite/Spiro-OMeTAD/Au | 15.11 | [62] |
H2O/IPA | Two-step | Pb(NO3)2/MAI | Mesoporous: FTO/c-TiO2/m-TiO2/Perovskite/Spiro-OMeTAD/Au | 12.58 | [63] |
TEP/DEE | One-step | (PbI2 + FAI + MACl) | Planar: FTO/SnO2/Perovskite/Spiro-OMeTAD/Au | 18.65 | [33] |
TEP | Two-step | PbI2/FAI:MAI | Planar: FTO/SnO2/Perovskite/Spiro-OMeTAD/Au | 20.98 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajid, S.; Alzahmi, S.; Tabet, N.; Haik, Y.; Obaidat, I.M. Fabricating Planar Perovskite Solar Cells through a Greener Approach. Nanomaterials 2024, 14, 594. https://doi.org/10.3390/nano14070594
Sajid S, Alzahmi S, Tabet N, Haik Y, Obaidat IM. Fabricating Planar Perovskite Solar Cells through a Greener Approach. Nanomaterials. 2024; 14(7):594. https://doi.org/10.3390/nano14070594
Chicago/Turabian StyleSajid, Sajid, Salem Alzahmi, Nouar Tabet, Yousef Haik, and Ihab M. Obaidat. 2024. "Fabricating Planar Perovskite Solar Cells through a Greener Approach" Nanomaterials 14, no. 7: 594. https://doi.org/10.3390/nano14070594
APA StyleSajid, S., Alzahmi, S., Tabet, N., Haik, Y., & Obaidat, I. M. (2024). Fabricating Planar Perovskite Solar Cells through a Greener Approach. Nanomaterials, 14(7), 594. https://doi.org/10.3390/nano14070594