A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption
Abstract
:1. Introduction
2. Structure and Model
3. Results and Discussion
3.1. a-C MSA for Solar Energy Harvesting
3.2. Underlying Mechanisms of the Broadband Absorption
3.3. Geometric Effects on Spectral Absorption Performance at Normal Incidence
3.4. The Effect of Polarization Angle and Oblique Incident Angle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press: Cambridge, UK, 2011; Available online: https://www.uncclearn.org/wp-content/uploads/library/ipcc15.pdf (accessed on 21 May 2023).
- Kim, S.; Yim, J.; Wang, X.; Bradley, D.D.; Lee, S.; de Mello, J.C. Spin-and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv. Funct. Mater. 2010, 20, 2310–2316. [Google Scholar] [CrossRef]
- Lei, Y.; Li, Y.; Lu, C.; Yan, Q.; Wu, Y.; Babbe, F.; Gong, H.; Zhang, S.; Zhou, J.; Wang, R. Perovskite superlattices with efficient carrier dynamics. Nature 2022, 608, 317–323. [Google Scholar] [CrossRef]
- Rana, A.S.; Zubair, M.; Danner, A.; Mehmood, M.Q. Revisiting tantalum based nanostructures for efficient harvesting of solar radiation in STPV systems. Nano Energy 2021, 80, 105520. [Google Scholar] [CrossRef]
- Joo, B.S.; Kim, I.S.; Han, I.K.; Ko, H.; Kang, J.G.; Kang, G. Plasmonic silicon nanowires for enhanced heat localization and interfacial solar steam generation. Appl. Surf. Sci. 2022, 583, 152563. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Xuan, Q.; Kwan, T.H.; Dabwan, Y.N.; Pei, G. Tunable thermal management based on solar heating and radiative cooling. Sol. Energy Mater. Sol. Cells 2022, 235, 111457. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Gao, G.; Xie, F.; Ju, R.; Yu, S.; Liu, K.; Li, J.; Wang, W.; Li, W. Scalable selective absorber with quasiperiodic nanostructure for low-grade solar energy harvesting. APL Photonics 2023, 8, 020801. [Google Scholar] [CrossRef]
- Feng, D.; Yee, S.K.; Zhang, Z.M. Improved performance of a near-field thermophotovoltaic device by a back gapped reflector. Sol. Energy Mater. Sol. Cells 2022, 237, 111562. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Ji, X.; Yang, J.; Zhang, Z.; Ma, Y.; Zhang, Z.; Zhou, B.; Shen, J.; Du, A. Over 11 kg m−2 h−1 Evaporation Rate Achieved by Cooling Metal–Organic Framework Foam with Pine Needle-Like Hierarchical Structures to Subambient Temperature. ACS Appl. Mater. Interfaces 2022, 14, 10257–10266. [Google Scholar] [CrossRef]
- Hou, G.; Wang, Z.; Lu, Z.; Song, H.; Xu, J.; Chen, K. Enhanced broadband plasmonic absorbers with tunable light management on flexible tapered metasurface. ACS Appl. Mater. Interfaces 2020, 12, 56178–56185. [Google Scholar] [CrossRef]
- Chen, M.; He, Y. Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals. Sol. Energy Mater. Sol. Cells 2018, 188, 156–163. [Google Scholar] [CrossRef]
- Zhou, J.; Han, Y. Design of a widely adjustable electrochromic device based on the reversible metal electrodeposition of Ag nanocylinders. Nano Res. 2023, 16, 1421–1429. [Google Scholar] [CrossRef]
- Ryu, Y.; Kim, C.; Ahn, J.; Urbas, A.M.; Park, W.; Kim, K. Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated Multiscale Funnel Structures. ACS Appl. Mater. Interfaces 2018, 10, 29884–29892. [Google Scholar] [CrossRef]
- Ye, S.; Zha, H.; Xia, Y.; Dong, W.; Yang, F.; Yi, C.; Tao, J.; Shen, X.; Yang, D.; Nie, Z. Centimeter-scale superlattices of three-dimensionally orientated plasmonic dimers with highly tunable collective properties. ACS Nano 2022, 16, 4609–4618. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, C.; Wang, Q.; Zhang, H.; Owens, C.E.; Hart, A.J.; Cui, K. Multiscale Plasmonic Refractory Nanocomposites for High-Temperature Solar Photothermal Conversion. Nano Lett. 2022, 22, 8526–8533. [Google Scholar] [CrossRef]
- Lin, H.; Sturmberg, B.C.; Lin, K.-T.; Yang, Y.; Zheng, X.; Chong, T.K.; de Sterke, C.M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Lin, K.-T.; Lin, H.; Yang, T.; Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 2020, 11, 1389. [Google Scholar] [CrossRef]
- Zoubos, H.; Koutsokeras, L.E.; Anagnostopoulos, D.F.; Lidorikis, E.; Kalogirou, S.A.; Wildes, A.R.; Kelires, P.C.; Patsalas, P. Broadband optical absorption of amorphous carbon/Ag nanocomposite films and its potential for solar harvesting applications. Sol. Energy Mater. Sol. Cells 2013, 117, 350–356. [Google Scholar] [CrossRef]
- Xu, J.; Fan, H.; Liu, W.; Hang, L. Large-area uniform hydrogen-free diamond-like carbon films prepared by unbalanced magnetron sputtering for infrared anti-reflection coatings. Diam. Relat. Mater. 2008, 17, 194–198. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic: San Diego, CA, USA, 1985. [Google Scholar] [CrossRef]
- Hähnel, D.; Golla, C.; Albert, M.; Zentgraf, T.; Myroshnychenko, V.; Förstner, J.; Meier, C. A multi-mode super-fano mechanism for enhanced third harmonic generation in silicon metasurfaces. Light Sci. Appl. 2023, 12, 97. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C.; Piket-May, M. Computational electromagnetics: The finite-difference time-domain method. Electr. Eng. Handb. 2005, 3, 15. [Google Scholar] [CrossRef]
- Wu, Z.; Ren, Z.; Wang, J.; Hou, S.; Liu, Y.; Zhang, Q.; Mao, J.; Liu, X.; Cao, F. Realization of an efficient wide-angle solar selective absorber via the impedance matching. Sol. Energy Mater. Sol. Cells 2022, 238, 111582. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Caratenuto, A.; Li, J.; Zhou, S.; Ran, R.; Chen, F.; Wang, Z.; Wan, K.-t.; Xiao, G. A new strategy towards spectral selectivity: Selective leaching alloy to achieve selective plasmonic solar absorption and infrared suppression. Nano Energy 2022, 92, 106717. [Google Scholar] [CrossRef]
- Greffet, J.-J.; Nieto-Vesperinas, M. Field theory for generalized bidirectional reflectivity: Derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law. JOSA A 1998, 15, 2735–2744. [Google Scholar] [CrossRef]
- Air Mass 1.5 Spectra, American Society for Testing and Materials (ASTM). Available online: http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed on 15 May 2022).
- Ji, C.; Lee, K.T.; Xu, T.; Zhou, J.; Park, H.J.; Guo, L.J. Engineering light at the nanoscale: Structural color filters and broadband perfect absorbers. Adv. Opt. Mater. 2017, 5, 1700368. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Z.; Luo, Y.; Wu, Z.; Liu, Y.; Hou, S.; Liu, X.; Zhang, Q.; Cao, F. High-performance spectrally selective absorber using the ZrB2-based all-ceramic coatings. ACS Appl. Mater. Interfaces 2021, 13, 40522–40530. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef]
- Barreda, Á.I.; Saleh, H.; Litman, A.; González, F.; Geffrin, J.-M.; Moreno, F. On the scattering directionality of a dielectric particle dimer of high refractive index. Sci. Rep. 2018, 8, 7976. [Google Scholar] [CrossRef]
- Van de Groep, J.; Polman, A. Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express 2013, 21, 26285–26302. [Google Scholar] [CrossRef]
- Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D.N.; Brener, I.; Pertsch, T.; Kivshar, Y.S. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 2015, 3, 813–820. [Google Scholar] [CrossRef]
- Sun, B.; Wang, L.; Sun, Y.; Ren, J.; Yang, Y.; Liu, H.; Liang, D.; Li, A.; Wang, C. Optical Performance, Thermal Stability, and Failure Analysis of the WNx-Si3N4 Multilayer Solar Selective Absorbing Coatings. ACS Appl. Energy Mater. 2022, 5, 1883–1893. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Chen, G.; Ma, C.; Zhang, Q.; Li, X.; Geng, Y.; Jia, B.; Luo, H.; Liu, D. A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption. Nanomaterials 2024, 14, 580. https://doi.org/10.3390/nano14070580
Su J, Chen G, Ma C, Zhang Q, Li X, Geng Y, Jia B, Luo H, Liu D. A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption. Nanomaterials. 2024; 14(7):580. https://doi.org/10.3390/nano14070580
Chicago/Turabian StyleSu, Junli, Gang Chen, Chong Ma, Qiuyu Zhang, Xingyu Li, Yujia Geng, Bojie Jia, Haihan Luo, and Dingquan Liu. 2024. "A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption" Nanomaterials 14, no. 7: 580. https://doi.org/10.3390/nano14070580
APA StyleSu, J., Chen, G., Ma, C., Zhang, Q., Li, X., Geng, Y., Jia, B., Luo, H., & Liu, D. (2024). A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption. Nanomaterials, 14(7), 580. https://doi.org/10.3390/nano14070580